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Abstract. We studied the process of proton transfer from oxygen of serine 195 to nitro-
gen of the imidazole ring of histidine 57 that takes place in the active site of the enzyme� -chymotrypsin (CT). We studied the dynamics of the proton in a non-stationary poten-
tial of the active site of CT with regard to the fluctuations determined by the oscillations
of the clusters. In addition to tunneling in the non-stationary potential we observed an
incoherent dynamic irreversible process of the over-barrier transfer, that is caused by the
noise action. The fluctuations of the potential field of the active site were described by
either white or colored noise. Probability and energy parameters were obtained for both
cases. We studied the influence of the amplitude and frequency of the colored noise and
the asymmetry of the potential wells of the non-stationary two-minimum potential on the
proton dynamics. It was demonstrated that over-barrier proton transfer plays the most
important role.

1 Introduction

Conformational changes of the enzyme molecule are related with transitions of
the multi-stable system from one equilibrium state into another under the action
of, for example, thermal fluctuations or some other external factors (light quan-
tum, chemical reaction, etc.). Proteins consist of thousands of atoms and, there-
fore, the calculation of this process with the use of molecular dynamics is quite
difficult. It is assumed that protein molecules consist of relatively rigid clusters,
that is why such transitions between the multi-stable states and the fluctuation
motions can be described by the methods of classical cluster dynamics (see, e.g.,
Shidlovskaya, Schimansky-Geier, Romanovsky 2000, Netrebko et al 1994, Ro-
manovsky 1997, Shaitan 1994). Molecule as a whole can be considered with the
use of classical dynamics, whereas the active site must be considered as a quan-
tum system. Below we consider a particular model of the enzyme. According
to the X-ray data [Birktof, Blow1972; Havsteen1989, 1991] CT molecule con-
sists of two subglobules each of which consists of six more or less rigid clusters.
The structure of the molecule is stabilized by H-bonds. One of the key stages
of the catalytic act is related with proton transfer is the H-bond between serine
195 and histidine 57 [Fersht1977]. Note that such a proton transfer is typical for
other hydrolytic enzymes (e.g., acetylcholinesterase) [Quinn 1987, Romanovsky
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et al.1999]. Similar problems are met in the case of consideration of the prob-
lems related with proton transfers in a chain of H-bonds [Davydov 1985, Nylund
et al.1993; Manevich et al. 1994]. We study proton transfer in a local potential
energy profile in a pocket of CT active site (Fig. 1). The profile was calculated
by semi-empirical method PND for a free active site and the complex with the
ligand. In the latter case the peptide bond of the substrate was positioned in the
close vicinity of the H- bond of the catalytic group. Proton transfer takes place in
the potential field of the atoms that belong to different clusters. In the absence of
the substrate the potential profile is asymmetric and the potential barrier is high
(about 30 kcal/mole). Substrate binding causes a series of local conformational
changes in the active site that result finally in the symmetrization of the potential
relief and lowering of the barrier [Romanovsky, Khurgin & Chikishev(1988)]. The
characteristic time of the conformational changes is about 100 ps [Rubin (1987)]
which is much larger than the period of oscillations of clusters. That is why in our
model we calculated the proton transfer under adiabatic approximation with re-
gard to only thermal fluctuations of the clusters and assuming symmetrization of
the potential profile. Related problems are discussed in monograph [Chernavsky,
Chernavskaya 1999].

Fig. 1. a) Two-domain structure of � -chymotrypsin. Shown are the amino acid residues
serine 195 and histidine 57 of the active site; b) a scheme of the fragment of the active
site with the H-bond Ser195-His57 in which the proton transfer takes place along the
coordinate � (Å); c) symmetric one-dimensional potential profile of the H-bond Ser195-
His57.
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2 Method of calculation of proton dynamics in a stochastic

potential

The calculated symmetric profile �����	� was approximated by a sum of two Morse
potentials, 
����
�����	��� and 
����
�
�����	��� , and the polynomials of even orders:

�������	����
������ � � ����
�� �
��� � � �!��"$#&% # �����'�)(*��+ #-,
(1)

where 
����	���/.0(	1$24365�78�9�	:;���<�'�)(=�?>@�A�B24365�78��:;���<�C�$(D�E�?>GF�H
Here .I( is the depth of a single Morse potential and �D( is the position of its indi-
vidual minimum as well as the center of the barrier; � determines an equilibrium
distance between the wells’ minima; coefficients % #

are calculated to fit exper-
imental data on the transition frequencies. All the random processes of cluster
dynamics lead to fluctuation changes of the distance between the N and O atoms
in the H-bond. That is why the time dependence of the stochastic two-minimum
non-stationary potential is determined by the change of the distance between the
minima �J��K��L�M�N�POQ��K�� . Here OQ��K��L�ROQ��O ( ,$S ( , K�� is the classical noise vibra-
tion with the characteristic frequency

S ( and amplitude O ( of the oscillations of
the clusters. The latter were estimated as [Romanovsky, Tikhomirova & Khur-
gin(1979)]: S (UTWV*XZY[Y]\PV*XZY�+ Hz

, O4(<T/XQH^V�\_X@H � Å (2)

In this work we consider proton transfer under the action of delta-correlated ex-
ternal action and random oscillations of the clusters. We studied the influence of
the asymmetry of the potential profile, amplitude of the colored noise and the de-
tuning of the central frequency of the colored noise from the resonance frequency
of the system on the probability of proton localization in one of the wells of the
potential profile.

We used a quantum trajectories approach to the proton dynamics basing on
calculation of the time-dependent wave function governed by the Schrödinger
equation in the presence of classical noise. Wave function is localized initially in
one of the wells. The probability of the proton transfer and the total energy of the
proton are determined by the wave function. Fluctuation processes related with
interactions of the enzyme molecule with environment are taken into account
by means of introduction of the stochastic potential into the Hamiltonian of the
system under study:`a � `a (b� `�@c , `a (U� `d +�=e � `�Q( , `�QcU��� �Bfgc4hji�k � `���B� `�Q(ZH (3)

Here
`d , `� are the operators of the momentum and coordinate and OQ��K�� is the clas-

sical noise. Undisturbed potential
`�Q(l�m�Q(Z� `��� is given by Eq. (1) with no shift of
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the distance � . Noise perturbed operator of the potential energy
`�Qc is approxi-

mated as `�@cU�on `
I��O��n O ppppp c[qg( O6H (4)

Proton dynamics was calculated with the use of the computer codes based on
symmetrization of the evolution operator [Kosloff 1988]. For the the system de-
scribed by the Hamiltonian

`a ��K��r� `d + �6�s�	et�	�u��� `� , K�� the unitary transformation
of the wave function for a time step �0K is represented in the symmetric formv �G�LK��bTw24365yxz�
{ ��� `� , K���6|} �0K?~�24365��g�
{ `d +�=eC|} �0Kz��24365yxz�
{ ��� `� , K���6|} �0K?~<H
This representation minimizes the error due to non-commutativity of operators`d + , ��� `� , K�� and provides the possibility to simply apply the transformation to the
wave function � as a non-operator multiplication, if only each time � is converted
to a proper choice of either � or d -representation.

We suggest that the initial state wave function �U��� , X�� is localized either in
the first or second well and belongs to the tunnel-splitted minimum energy state
of the unperturbed Hamiltonian

`a ( :�U��� , XZ�r� V� � 7 �r�D���	�!�_�r�����	�?> , (5)

where � ��� � are the eigen symmetric/antisymmetric eigen functions,
`a ( � ��� � �� �[� � � �[� � . If the noise perturbation is neglected, these states evolve exactly like

the ones of a two-level system so that the other eigen states � #
of

`a ( are not
involved into dynamics. Relaxation takes place in the system described by the
Hamiltonian (3) under the action of perturbation (4). Perturbation (4) is classical
and the relaxation process is determined by the dephasing mechanism discussed
in [Burstein 1963)]. The characteristic time of relaxation of the system is given
by [Fine 1972]: �)� ���s���W���gY9� �=�|} +�� � Y + � +4�����!(
�C�b��H (6)� Y�+ is the matrix element of the perturbation; �]( is the resonance frequency of the
system, and � is the noise frequency. Formula (6) is valid under the condition of
sufficient smoothness of the spectral power density of the noise �g���b� .

White noise is used for simulation of fast non-correlated vibrational motions
of the valence bonds by which N and O atoms are bound to the clusters. The ran-
dom variation of the distance OQ��K�� between the minimums of the potential in the
case of the non-correlated perturbation (white noise) was modeled as a discrete
time sequence with statistically independent random values, introduced properly
to represent the process with the correlation function� c���K � , K � ���r� � c���K �@�CK � �������	�-��(*�6��K �Q�'K � �^�4H (7)
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Therefore, OQ��K�� represents the � -correlated process with the constant spectral
density � c����b�9�¡�=O +( �=�¢�£��( . As the changes of the length of the H-bond due
to stretching vibrations of the corresponding atoms are not large, the amplitude
of the white noise is much smaller than that given by (2): O ( ��X@H X@V Å. The abso-
lute difference between the energies corresponding to the minimal and maximal
distances does not exceed ¤Z¥�¦§�¨X@H © kcal/mole. Random cluster oscillations
caused by the action of the medium on the enzyme molecule are simulated by
colored noise [Schimansky-Geier, Zulicke 1990], the amplitude and frequency of
which are determined by (2). Transformation ª of the white noise OQ��K�� into colored
noise «¬��K�� is determined by:ªr«u�®­«I���	�b¯«0�A��+( «u��OQ��K���H (8)

This is stochastic Langevin equation of the second order. Spectral power den-
sity of the colored noise determined by the equation (8) is given by:�����b�B� � (��� + �°� +( � + �_±�� + � + H (9)

The width of the contour �����b� is ²³�R�;��´ , and the corresponding damping is���µ�;�6�G��´l� and the responding quality factor is ´¶T³V$X [Romanovsky, Khur-
gin & Chikishev 1988]. In our calculations we varied the frequency � and � ( .
Studying the influence of the colored noise on the dynamics of the proton in the
stochastic potential we varied the detuning �*�����](9�'�!·�¸z¹
�»º-² ( º is an inte-
ger) of the central frequency of the noise �]( from the resonance frequency of the
system �¬·�¸z¹ and the amplitude according to (2).

We analyzed the time evolution of probability of proton localization in one of
the potential wells. The corresponding dependencies allow one to determine the
time of the proton transfer. Time dependence of probability in the case of white
noise action can be approximated by [Lax 1968]:¼ ��K���� V� � V��½4¾Z¿ �G�=��À Y K���24365��g� K� ( �AH (10)

The time of the transfer is determined in this case as the time

� ( of relaxation
to the stationary state. The relaxation time for the system in the case of colored
noise action is determined after selection of the local maxima and approximation
of this set by a function:¼�Á[Â)Â ·�ÃzÄ ��K���� V� � V� 2)3�5 � � K� ( � H (11)

3 Proton dynamics in a non-stationary profile

The characteristic times of the proton transfer in the stochastic potential with
different parameters are summarized in Table 1. The tunneling frequency for the
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symmetric stationary potential is about 17 ps �-Y (splitting is � � �Å�uÆ-V*X �Ç+
kcal/mole). Figure 2 shows the relaxation of the probability

¼ ��K�� to the station-
ary level for the case of the white noise action. Approximation parameters (see
(10)) for this dependence are:

� ( �ÈVD� ps and À Y �ÈVDÉ ps �-Y , the latter virtually
coincides with the tunneling frequency of the stationary potential. Calculation of� ( with the use of the formula (6) yields the value:

�@Ê�Ë ¸zÃ[·( �NV$Ì ps. It is seen from
Fig. 2b that the total energy of the proton increases, which provides evidence of
the proton transition to the highest states.

_&KDUDFWHULVWLF�WLPHV�RI�WKH�SURWRQ�WUDQVIHU�Í=Î[Ï[ÐÒÑ)ÓmÔ)Õ�Ö^Õ4Ó-Ñ�ÐÒÑ$ÖjÏ ×�Ñ�Ï)Ø$Ù ÐÒÏ
ÚÛ ÜÝ ÝÞß àâá$ãä å ã�æ^ç ç

è ç ç ç
7éjê	ë)ìjíGî ïð ñ ò^óGôtõÒö	÷$ø8ù�ú ûütõjö	÷)øjý ú t þ4ÿ���������	�
���
�����������
���������
�
���� ���� � � ��� � � !�" #�$�% � � ��� � ��� � ��� &'���! � � ��� � ��" ��( (�" #)& � � ��� � ��� � ���*+! � � ��� � ��" , ��" *-&'# � � ��� � ��� � ���.)/�02143�025 647�8�3+9)14:)0<;+1�6�=�0<5 /�3>/+?)0<;+1A@�;�5 0�1B3+/�5 C+1� ��" �)& � !�" #�$�% &D,)" !�!�% &D,� ��" �)& ��" ��( (�" # &'(�" #�*�, &'$�" *�*

� ��" �)& ��" , � � ��� � *�%+E�" ,�% ,+!��.)/�0�1434025 647�8�3+9)14:)02;+1F6�=�025 /�3B/+?�02;�1�=�/�7 /�:21�9G3+/�5 C+1� ! ��"H&'$ � � � ��� � &D%)"H&D%+( &'��" ��,� ( ��"H&'$ � � � ��� � ,+��" ,�*+! &'!�"�&'E� ��"H&'$ � � � ��� � ,+(�" ��#�* ,+��" (( ��"H&'$ � � � ��� � &'E�" ,-& #�" E! ��"H&'$ � � � ��� &'��" *+(�# $�" E�*! ��" �)& � !�" #�$�% (�%�%+E� ��"H&'$ ��" ��( � � ��� #�!�" ( #�(! ��"H&'$ ��" ��( � � ��� � #���" E $�$�" $� ��"H&'$ ��" , � � ��� � (�E�E ,�,+(*+! ��"H&'$ ��" , � � ��� � ,)" ��, #�" !IKJ�L4MDL�N L�O�PQL�N�RTSDU VQWYXHZ W\[']TWDRT^`_DPaL�OKM�bdc e\fhgdikjQVml n�WDU ohWDRYXHZ W\[']TWDRT^`_pP\q�N [']TrDs U t _hcu�u�RTSDU V\WvrDwpjds U t ]QxhWu�uKu+r\V`_dwpwkWQt Z _y^mSdS\XHU tHU WDRmt�cfduHtH]dRdRTWDs U RQozjTWDZ U SQx�ci\u�t {TWdSDZ WQtHU ^mrDsTZ WDs rQ|hrQt U SDR-tHU wkW'c}du�Z WDs rQ|hrQt U SDR-t U wvW'c
Table 1. Characteristic times of the proton transfer in stochastic potentials with different
parameters.
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Fig. 2. Proton dynamics in a stochastic potential under the action of the white noise: a)
probability of proton localization in one of the potential wells (solid line shows the approx-
imation curve); b) total energy of the proton.

We calculated the time dependencies of the probabilities for the case of the
colored noise action and determined the transfer times

� ( for the amplitude 0.18
Åat the range of (2) and the detunings �L�_���¨§	² , ��Ì�² , X , Ì�² , §�² . Here ² is the
width of the contour of the spectral density of the colored noise (9). The calculated
relaxation times were compared with those determined theoretically according to
formula (6) (see Table 1).

Figure 3 shows time dependence of the probability and total energy of the
proton for the amplitude of the colored noise 0.18 Åand the detuning �L�¢�©§�² .

Characteristic time for the probability (Fig. 3a, formula (11)) was determined
to be

� ( �«ª ps. The theoretical value (formula (6)) is

�QÊ�Ë ¸zÃE·( � V�V ps. It was
found out that for the case of the colored noise the relaxation time is inversely
proportional to the square of the noise amplitude. For the amplitude O ( �MXQH XQV
Åand the detuning �L���¬§	² (Fig. 4) the theoretical value of the transfer time is��Ê�Ë ¸zÃ[·( �/Ì	±�±�É ps.

The probability of the proton transfer is maximal for the case of the symmetric
potential profile. The asymmetry is much more critical for tunneling than for over-
barrier transfer.
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Fig. 3. Proton dynamics in a stochastic potential under the action of the colored noise with
the detuning ÖG×ÙØÛÚ�Ü of the central frequency ×ÞÝ from the resonance frequency of the
proton transition between the lowest tunnel-splitted states; ß�Ý�Øáà)â�ã�ä Å: a) the probability
of proton localization in one of the wells; b) total energy of the proton.

We studied the potential:� ���	�b��
����	�!�/� V
�æå	�E
�� �
���¢�0�	� " #µ% # ���<�'� ( � #�,
(12)

where 
����	� is given by formula (1) and å is the degree of the asymmetry. We
performed calculations for two differences of the depths:

��
m� ç �QH �)ªUÆ�V$X �Ç+ , å ��Ì<Æ�V*X ��+�èV�H §���ªUÆ�V$X �gY , å ��Ì<Æ�V*X �-Y H (13)

In the first case ��
µT£� � ��é�qg( T&V$X ��+ kcal/mole; in the second case ��
ëê� � ��é�qg( ( � � � V�HH§�ìIÆ@V*X ��+ kcal/mole (1)). Tunneling is impossible for both
cases. For the smaller asymmetry and white noise O ( �NXQH XQV Å(see Fig. 5a) the
transfer time is

� (���V�ª ps (

��Ê�Ë ¸zÃE·( ��V)± ). Over-barrier transfer is possible for the
larger asymmetry as well (Fig. 5).
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Fig. 4. Proton dynamics in a stochastic potential under the action of the colored noise with
the detuning ÖG×ÙØÛÚ�Ü of the central frequency ×ÞÝ from the resonance frequency of the
system; ß Ý Ø à)â à)ã Å: a) the probability of proton localization in one of the wells; b) total
energy of the proton.

4 Discussion

In the stochastic potential an irreversible process of phase relaxation of the prob-
ability of proton localization in one of the wells takes place. The energy of the
proton increases and the proton reaches the levels above the barrier. The mech-
anism of phase relaxation (dephasing) is determined by the interaction with the
highest states that plays the most important role in the over-barrier transfer. In
our model we do not take into account the relationship between the position of
the proton and the shape of the potential profile. That is why reversible tunneling
does not describe proton transfer in contrast to irreversible over-barrier trans-
fer. In addition, the probability of tunneling is much less than the probability of
the over-barrier transfer in the asymmetric non-stationary potential. Thus, we
assume that irreversible incoherent over-barrier transfer resulting from the fluc-
tuation changes of the shape of the potential profile determines the mechanism
of the proton transfer in the active site of the enzyme. Note that the problem of
transfers in different non-stationary two-minimum potentials was addressed in
many works [Grossmann 1991; Hesse, Schimansky-Geier 1991; Elyutin, Ro-
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Fig. 5. Time evolution of the probability of proton localization in of the potential wells of
the asymmetric profile ( Ö54 Ø76�â 6�8:9�ã�à<;�= ( > Ø@?A9-ã�à<;B= ), Ö:4@C ÖADFEHGBI ÝKJ ã�à<;B=
kcal/mole under the action of a) white noise (solid line shows approximation curve) and
b) colored noise with the amplitude ß�Ý�Øáà)â�ã�ä Åand the frequency × Ø ã4â à+ÚL9+ã�àNM1= .
govenko 1999]. The most important results are reported in [Kagan 1991], where
it is demonstrated that under certain conditions over-barrier transfer dominates
over tunneling.

5 Conclusions

An irreversible relaxation dynamics of a proton in a two-well potential was de-
scribed with use of stochastic Schrödinger equation. Localization of the proton
in one of the wells turned to be a random event, which probability at the level of
0.5 takes place under the influence of both white and colored noise. The energy
of the proton in the stochastic potential increases. Thus, the over-barrier pro-
ton transfer occurs. We calculated the characteristic times of the proton transfer
in the stochastic potentials with different parameters. Under the action of the
colored noise the relaxation time is maximal for the case when the central fre-
quency of the noise coincides with the resonance frequency of the system cor-
responding to splitting of the first tunneling level. In the case of the colored
noise the relaxation time is inverse proportional to the amplitude of the noise.
In the case of the asymmetric potential tunneling is impossible. The action of
the colored noise makes the over-barrier transfer possible for small asymmetries:��
 T � � ��é�qg( T V*X �Ç+ kcal/mole. Whereas, the action of the white noise
makes over-barrier transfer possible for both small ��
 T³� � ��égqg( and large��
 ê � � ��égqg( asymmetries.

In the future studies of the proton transfer we plan to take into account the
relationship between the proton motion and the shape of the potential profile. We
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also plan to construct the potential profiles by means of ab initio calculations and
to compare the new profiles with those obtained by means of the semi-empirical
methods. We also plan to consider dynamics of the proton in 2D and 3D profiles.
It is worthwhile to consider also the following problems. 1) It was demonstrated
earlier [Shidlovskaya et al., 2000] that classical Fermi-resonance can take place
in 2D potential wells. Note that this problem was posed for the first time by Fermi
who calculated the splitting of levels in a system with 2:1 ratio of transition fre-
quencies [Fermi, 1931]. That is why we plan to study the problems of quantum
Fermi resonance in 2D profiles. 2) The phenomena similar to stochastic res-
onance [Anischenko, et al., 1999], [Anischenko, Vadivasova, Astakhov, 1999],
[Reinmann, Hanggi, 1997] must be studied in the case of quantum transitions
between two potential wells.
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