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Abstract: Dynamics of a three-level quantum system AR
configuration driven by a resonant laser field with and without
frequency modulation (FM) is studied for the first time in detall
using two simulation techniques — the density matrix and quan-
tum trajectories analysis. This analysis was applied to the FM-
spectroscopy of coherent dark resonances in Cs atoms and com-
puter simulation results for the absorption spectra are in qualita-
tive agreement with those taken in an experiment.
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Mechanism of forming the dark resonances for the case of the
A-system interacting with the frequency-modulated laser field
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1. Introduction of multilevel atoms, especially in the presence of an exter-
nal magnetic field, also results in essential modification of

The coherent population trapping (CPT) phenomenon ishe resonance dependencies on the parameters of the fields
currently widely used in different applications such as driving the system.

magnetometry, metrology, and others [1-6]. It is most con-
spicuous for thed-system formed of two closely spaced Despite the conventional experimental technique for
long lived levels optically coupled to a third distant short observing the dark resonances spectra with the use of two
lived level by two continuous coherent radiation fields resonant laser fields described above is now widely used
(Fig. 1). In absorption spectra, coherent superposition ofor many applications, still there is a need in elaborat-
the closely spaced levels leads to a very narrow dip ofing simpler experimental techniques, which would, for in-
induced transparency or, equivalently, to a non-absorbingtance, employ only one laser field, but with frequency
dark resonance when the resonance fluorescence is obmodulation (FM), that also allow spectroscopy of the co-
served. herent dark resonances in multilevel atoms. Such experi-
The basics of CPT phenomenon are well understood irments are conducted by the group of Prof. L. Moi at the
the frame of three-level analytical model [7]. For the caseUniversity of Siena in Italy [9] and they, in fact, initiated
of multilevel systems, however, such simple model has tathe current theoretical study of interaction between the
be significantly complicated and analytical results in mostthree-level system ial-configuration with the frequency-
cases became impossible [8]. Enriched energetic structurmodulated laser field.
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In a typical experiment on FM-spectroscopy of co- is proportional to the stationary value of the excited state
herent dark resonances of Cs atoms, the atomic media isopulation:
placed in a homogeneous magnetic field, which value is
in the range of fewt0 uT. The coherent resonance is ob- Iy ~ (ng) = Trngp. (2)
served when the laser emission, which is frequency modu-
lated, contains in its spectrum frequency components thatherefore, calculation of the total absorption of the
are in resonance with the atomic levels, i.e., the frequencyystem is reduced to the calculation of the excited state
difference between these components matches the Zeemaopulationn.
splitting w15 of the ground-state sublevels (Fig. 1) due to In this section, we will focus on the numerical simu-
the presence of dc magnetic field. The laser spectrum ifation techniques, which can be adequately used for sim-
tailored via diode laser frequency modulation obtained byulating fluorescence/absorption spectrum of both a model
direct modulation of the laser junction current. The coher-A-system and a multilevel atom driven by the FM laser
ent structure can be then seen scanning the modulation frdield(s). With these notes in mind, there exist two key
guency in a small range around the two-photon resonanceomputer simulation techniques suitable for our purpose,
condition, or at a fixed modulation frequency scanning thenamely, the technique based on the solving the master
magnetic field in the corresponding range [9-12]. equations for the density matrix (we will call it thden-
Despite obvious simplicity of this method and numer- sity matrix analysis) and quantum trajectories technique
ous applications of FM-techniques in microwave, NMR, (we will call it the quantum trajectorieanalysis) [14-17].
and optical spectroscopy [13], analysis of the spectrum be-  In application to the analysis of multilevel atomic sys-
comes a separate problem as a theoretical model for thtems, the key difference between these two techniques is
FM-spectroscopy of dark resonances does not exist to ouputlined below. The density matrix technique is used pri-
knowledge so fat. marily for analysis of atomic systems with rather limited
In this paper, we present a detailed study of the dy-numberN of energy levels because the numbé? of
namics of a three-level quantum systemiiconfiguration =~ Master equations describing the system can became too
driven by resonant laser field with and without frequencylarge for real multilevel atoms (like Cs or Rb) and, there-
modulation using two computer simulation techniques —fore, such analysis would require relevant computer re-
the density matrix and quantum trajectories analysis. Qusources. By contrast, the quantum trajectories analysis of
studies show that analytical consideration of the problenthe multilevel atomic system with large numh¥rof en-
is impossible in this case. ergy levels requires computational resources proportional
The paper is organized as follows. General theoreticaf® &V and, therefore, has an advantage here. Despite this
background for both density matrix and quantum trajec-difference, each of the two techniques has its own ad-
tories analysis used for numerical simulation of the flu- vantages and drawbacks, so that we intentionally consider
orescence and absorption spectra of the dritesystem b_oth (_)f them to clarify which one is better and in which
is given in Sec. 2. In Sec. 3 two considered above com-Situation.
puter simulation techniques are applied for the analysis of
a driven/-system in both cases, when the frequency mod-
ulation is switched off (Sec. 3.1) and on (Sec. 3.2), respec2 1. Density matrix analysis
tively. Calculations are made for the absorption intensity.

Finally, the conclusions are summarized in Sec. 4. We will start with the density matrix analysis, when the

dynamics of a quantum system is described with the den-
sity matrix time dependence of which is defined by the

2. Theoretical analysis of temporal dynamics  following kinetic, i.e., master equation

of a driven A-system ;

p=—p U pl+Lop, (2)

In experiments on FM-spectroscopy of coherent dark res- i . . . .
onances, the total absorption/transmittion of theystem where first term in the right part of the equation describes

is measured. The total absorption in case when the relax:eversible dynamics of the system with the hamiltontan
ation processes in the system are only due to the decay @"d second term — nonreversible contribution to the dy-
the upper state is equal to the losses thanks to the flug?@mics due to the stochastic interaction of the system with

rescence. Total intensity of the spontaneous fluorescendd€ reservoir, which is described with the relaxation super-
operatorZ,.. In assumption that interaction of the system

1 1t is worth to note that interaction of a two-level system with with the reservoir can be described with a diffusion type
FM-field has been studied in detail, even in analytical form [13]. process, the relaxation Superop.erator can .be rgpresented
Further generalization of the theory onto the case of multilevelPY the secondary commutator with the hamiltonfdn of
systems, three-level systems specifically, does not exist to outh€ System-reservoir interaction, averaged over the reser-
knowledge so far. voir noise¢(t).
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Figure 1 (online color at www.Iphys.org)l systems formed of the Zeeman sublevels infhe= 3 — F. = 2 transitions excited by
thes™ ande~ components of the respective frequenciesandw-, whose difference is equal to the splitting of the Zeeman sublevels
with Ampr = 2. Three-level system irl-configuration has the following parametets;, w2 are the frequencies of the laser fields
driving transitions of the system?:3, {223 are the respective Rabi frequenciés;is the frequency detuning from the) — |3)
transition;~ys1, 32 are the decay rates from excited stéig onto the low-laying leveld1l) and |2); vi1» andw are the decay and
pumping rates of the levél) via the level|2), correspondinglyi i, I's2, andli are the dephasing rates for the transitiphs— |3),

|2) < |3), and|1) < |2), respectively

Then, the relaxation termd,.p in master equation (2) For the case of a-system, in order to write the oper-
can be written in the general Lindblad form [18] as atorsC,,, one has to take into account the following relax-
ation processes: spontaneous decay from the excited state
£r=—12(0$0m O+06 (j;—LCvm)JrZém ®Ct,@3) |3), incoherent decay and incpherent pumping of the two
2 ground leveldl), |2). OperatoiC,, in this case will consist
of four terms responsible for the above listed relaxation
Where@ is the substitution Symb0| to be replaced with the processes, name|y, operamﬁ’s and 02 describe Sponta-
density matrixp, operatorsC describe interaction with  neous decay from the excited stas onto the ground
the reservoir, operators;: are conjugated to the operators states|1), |2), operatorsC’; and Cy describe incoherent
(., and both of them have dimensi¢h/t)'/2. decay and incoherent pumping of the lej#lto the level
It is worth to note that representation (3) preserves in-|2):
terpretation ofp as the density matrix, i.e., the normaliza-

m m

tion conditionTr p — 1 and positivity of the probability C1 = (131)"/2 P13, C’fr = (y31)"/* P31, 4)
(¥|plw) to find the system in any state)) are fulfilled & 12 p 12 p

at any time moment and for any initial stateg = 0). = (y32) /" P23, = (v32)"/ " Ps2,

Note also that Eq. (3) does not require thgt mustbe de- - 1/2 5 1/2 A

fined uniquely when they are chosen phenomenologicall)p3 (v21)" P12, = (v21) " P

to represent an a’priori known relaxation process. Cr = (ia) /2Py | = (112) 2Py |

In the right side of Eq. (3) providing the total proba-
bility contribution (d/dt)Trpdt = 0 the first sum is the  \yhere B, are the transition operators, which are repre-
anti-commutator, which consists of the terms decreasmg;ented in general case, by the matrices with the only non-
the total populatiofirp, as far as the second sum increaseszerokl-,elementpkl(k ) : 1
it. The number of operators,,, in Eq. (3) in general case With the help of éqs. (3), (4) the relaxation tedn
can be rather large because each operator corresponds t aster equation (2) takes the form:
specific decay channel. For the case of spontaneous emis-
sion in a two-level system, for instance, there exists only / o, a, ;4

one operator because we consider only one decay chart o, a5 ag | | (5)
nel, i.e., spontaneous decay. This operator has the form .. ag aq

= Fl/Qc}*, whereé~ = |g)(e| is the atomic transi-

tion operator from the ground stafg) onto the excited wherea; = —p12011(t) + Y21p22(t) + Y¥31033(¢), a2 =
statele). More examples are described in [17]. —0.5(y21+p12)p12(t), s = —0.5(y31+7y32+112) p13(t),
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cay and pumping rates of the levid) via the level|2),
respectively.

; 1' ”\\\ Now, master equation (2) can be integrated numeri-
02 ““‘w ; I i cally for a given Hamiltonian” of the system and then

@ ““ ““M 'II//I III/I;;/;;;[I”I il 'Il;n{"llll”,, all its necessary characteristics can be modeled.

5 il -
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) I/,,,//I I II/I l// 2.2. Quantum trajectories analysis

of aA-system is the quantum trajectories analysis [14—-17],
which uses, instead of the time-dependent density matrix,
a properly defined statistically-equivalent stochastic tem-
poral dynamics of the wave function with the following
averaging of the results by analogy with the Monte-Carlo
method.

Modeling evolution of the wave function on the dis-
cretization intervalit, which ensures identical results with
the solution of the master equation (2), includes two parts:
04 — e 5 T i) modeling continuous variation of the current state and ii)

. ‘ ' A e modeling quantum jumps occurring randomly with certain
probability.

II/I y,l Another relevant approach to model the temporal behavior
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‘ , Let us assume that the system at titrie in the state
2 M ',' 5 |4(t)). Then, the continuous variation of the current state
E} \ ""'h 'l’l'l can be described with the temporal dynamics of the wave
E ",,’!' "" : ; function |¢»(!) (¢)), which is governed by the Sabdinger
) 'qtl'i equation

"' ‘w(l)(t + 5t)> ~ (1 n %ﬁdt) (1)) 6)

with the non-hermitian hamiltonian

““‘;’3‘«’ R

! G ih AL oA
W " H:H—gzc;cm. 7

New wave-function is not normalized because the
hamiltonian H is a non-hermitian one and the squared
norm of the function is equal tay™) (t 4 dt) |y (t +dt)) =
Figure 2 Temporal dependence of the excited state population1 — dp, wheredp has the form:
from a drivenA-system calculated with the help of density ma- +
trix approach (a)yand using quantum trajectorrl)es techm(;/ue (b) Z Opm = dt Z |C C [t (8)
Both plots show similar dependence of the excited state popu-
lation ns versus time since the excitation of the system and thewhere the time steg¢ must fulfill the inequalitydp < 1.
ground state frequency splitting,. For simplicity, the calcula- Random behavior of the wave function is described
tions were made for the case of a symmettisystem, i.e., for ~ with the probabilitydp of quantum jumps. If the quan-
the equal Rabi frequencig®,; = (223 = 1 and equal sponta- tum jump does not occur with the probability— op, the
neous decay rateg; = ys2 = 7 = 1 from the excited state; wave function:)(") (¢ + 6t)) must be renormalized to unit
relaxation parameters of the ground state were set to zero. Thand then it will be mapped with the corresponding nor-
number of computed quantum trajectories for figure (b) is equalmalized functior|¢ (¢ + 0t)). When the quantum jump oc-
to 2000 curs, the wave-function transfers into the stéig|«(t))
with the related probabilityp,,, /ép. Thus, at the time mo-
mentt + 6t we do have one of the two normalized wave-

functions:
ay = —0.5(y21 + pi2)pi2(t), as = piap1i(t) — . . .
o1 pas(t) + 732033 (1), a6 = —0.5(731 732 +721) pas (L), - with the probabilityl — dp t(r11§a guantum jump d_(i(/e2s not
ar = —0.5(y31 + 32 + p12)p13(t), ag = —0.5(vys1 + occur andy(t + dt)) = [t (t + 6¢))(1 — op)~ /%,
Va2 + Y1) p23(t), a9 = — (31 + v32)pa3(t), andysi, a2 - with the probabilitysp,, the quantum jump occurs and
are the spontaneous decay ratgs, and .1, are the de- [ (t +6t)) = Crn|1b(8))(3pim /58) /2.
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3. Modeling absorption of a driven A-system which is proportional to the excited state population, one

needs simply to calculate the population (1) of the excited
3.1. Case when the frequency modulation is  state[3). This temporal dependency is shown in Fig. 2a
switched off vlersus the frequency splitting » between two ground lev-
els.

From Fig. 2 one can see that for the case when only
one laser field with the frequency; acts on both transi-
tions|1) < |2) and|2) < |3) of the A-system, the dark
resonance is observedwt, = w;, — wr, = 0, i.e., for the
case of degeneraté-system. In experiment, such a reso-
nance corresponds to the case when an external magnetic
field is applied to produce the field depending frequency
splitting of the ground state sublevels.

Before studying interaction of a-system with the FM
laser field, let us first analyze a simpler problem — how
the A-system interacts with a resonant laser field without
frequency modulation.

3.1.1. Density matrix analysis

Let us consider a three-level quantum system /in
configuration, which interacts with the fiel@(t) =
E cos(wot + ). In the basis of the atom energy states
[1),]2),|3) and at the choice of the unperturbed atomic : . . -
motion in the form of the free precession of 3 state We will consider only two actually essential radiation de-

with the laser frequency, the interaction hamiltonian has cay channels from .excited staf) onto the Iovxf-lyipg
the form: states|1), |2), reducing the number of operatofs,, in

Eq. (3) just to two operatorst; = (vs;)Y/2P5 and
o opf 0 0 fhs ¢, — 1/2p
H = — O —Ww12 923 (9) 2= (732) N 23 A .
D15 93 0y ’ InsertingC, andC; into Eq. (3), we obtain the follow-
ing equation for the relaxation term:

3.1.2. Quantum trajectories analysis

where(?;3, {203 are the Rabi frequencie®, = wg—wi3is

the one-photon frequency detuning of the probe laser field,, . 731p§3(t) 0 _§P13(t) 11
andw;, is the frequency shift between the two ground lev- =~ = Ya2p33(t) —Lp2s(t) | (11)
els (see Fig. 1). —Ip13(t) —I'p23(t) —20ps3(t)

Substituting relaxation operator (3) in Eq. (2) we re-
ceive the following set of differential equations for essen-
tial density matrix elements:

wherel” = (731 + 732)/2. In accordance with the results
of Sec. 2.2, the non-hermitian interaction hamiltonian is
given by Eq. (7). Substituting’y; andC> in this equation
p11(t) = —pr2p11(t) + Y2122 (£) + Y31 p33(8)+ (10)  leads to the hamiltonian of the form:

+i[f213p13(t) — $213p31(t)], nf 0 0 $1s

ﬁ =3 0 —wiz {23 ) (12)
p12(t) = —I2p12(t) — ilwiapr2(t) + 223p13(t)— (3 (23 —il'+ 0L,
7913/)32 (t)] R where we assume tha§1 =732 = -
. ) From the Schidinger equation (6) one can readily ob-
p13(t) = —Tsps(t) + i[213p11 () + La3p12(t)+ tain the following set of differential equations for the prob-
+0p13(t) — P13p33(1)] ability amplitudesu, (), a2(t), andas(t):
p22(t) = p12p11(t) — Y21p22(t) + Y32p33(t)+ () = —ifhzas(t), (13)
+i[£223p23(t) — 223p32(1)] a2(t) = —il~wizaz(t) + fzas(t)],
pa3(t) = —Tsapos(t) + i[213p21 () + Qazpaa(t)+ az(t) = —i[f213a3(t) + 293a2(t) + (=il + 0 )asz(t)] .
Let us assume then that initially at= 0 all population
t)+0 t) — 12 t)|, . —_
Fwizpa(t) +91pa(t) 23P33(t)] in the system was equally distributed among the stdtes
P33(t) = i[—13p13(t) — 293p23(t) + 213031 (1) + and|2), i.e.,n; = ny = 1/2. Then, the set of equations
(13) can be integrated using the quantum trajectories tech-
+8223p32(t)] — (V31 + 732)p33(1) nique, which leads to the time-dependent wave-functions
po1(t) = plo(t),  par(t) = pls(t) paa(t) = pis(t) . and, respectively, to the temporal dependencies of the pop-

ulation of the system’s levels.
Integrating this set of differential equations we obtain ~ Temporal dependency of the excited state population
a complete picture of temporal dynamics of the driven  calculated with the help of quantum trajectories technique
system and can calculate any its characteristic. As soon as shown in Fig. 2b versus the frequency detuning of
we are interested in the total absorption of theystem, the two ground states. From Fig. 2b one can clearly see

(© 2006 by Astro Ltd.
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-10 -5 0 5 10 Figure 4 (online color at www.Iphys.org) Modification of the
Wialy spectrum of the the frequency-modulated laser field due to the

variations in the modulation frequenc€y and the modulation in-

dex M. Increasing the modulation indéX enlarges the number

of sidebands in the spectrum, whereas increasing the modulation
frequencys? enlarges the frequency separation between the side-
bands

Figure 3 (online color at www.lphys.org) Calculated population
of the excited state of the symmetricsystem {31 = v32 = 7,

I' = 1) versuswiz for 215 = 223 = 1 received with the help

of density matrix approach (solid line) and quantum trajectories
technique (dotted line, the number of computed trajectories is
equal to 2000) at/I" = 14, i.e., in the steady-state case

3.2.1. Density matrix analysis

. L . The interaction hamiltonian of thel-system interact-
that the stationary solution is reached at the time of theIng V\Ilith thel frequenlcy rr|10dulated Iasyer fieﬁ(t) _

order of10 :

A more;ydetalled comparison of the simulation results E expli(wot + M cos 2#)] + c.c. has the form:
obtained by the density matrix approach and with quantum 0 0 etA)
trajectories technique is shown in Fig. 3. It clearly shows 7y — 0 —wyy €A | (15)
that both methods give similar results and the curves are e~ 4 e—1AM) ), 51

coincide rather well.
whereA(t) = M sin 2t. Inserting equation fof, (pg) in
the form (5) into Eq. (2), we obtain the following set of
3.2. Case when the frequency modulation is  differential equations:

switched on p11(t) = —p12p11 () + 21022 (t) + Y3133 (8)+ (16)

In this Section, we will analyze the absorption spectrum of j[e=*A(*) )59, 5(t) — "2 213941 (1)]
the A-system driven by a resonant frequency-modulated

laser field E(t) with the carrier frequencyy, which for — p12(t) = —Ih2p12(t) + [ w12012(t)+
the case of harmonic modulation with the modulation in- ~ _, )
dex M and frequency modulatiof? can be written as +e (223p13(t) — © 213052(1)],
E(t) = Egexpli(wot + M sin 2t)] = @4)  fis(t) = —Tiapra(t) + il 2uzp11 () + 6rp1s(t)+
B . +6" 20 Dyap15 (1) — 20 21353 (1))
= Eyexp(iwgt) Z Jn (M) exp(in2t) . _ A
n=—oo p22(t) = p12p11(t) — y21p22(t) + ife $293p23(t)—
In this series expansion, the Bessel functiohyM) — —e'®) 255035 (t)] + Y3233(t) ,

characterize the frequency components of the frequency- "

modulated light, i.e., the amplitudes of the respective specphs(t) = —Ibsp23(t) + i[213p21 () + €20 2oz p00 () +
trum components are proportional to the Bessel functions iA®)

for the fixed modulation index/. Fig. 4 shows how the ~+0Lp23(t) +wi2pas(t) + €' Pazpss(t)]

spectrum changes with changing the modulation index. At L _iA@)
M and the modulation frequenaf. When the modula- p3s(t) = i[—e fhapis(t) —e {2323 () +
tion frequency? is fixed, increasing the modulation index 1etA) 1 eiAM Hl—

leads to the increasing the number of bands in the spectrum 13a1(t) 23p32(t)]

with the interbands distance being equalzo —(31 + 732)p33(t),

(© 2006 by Astro Ltd.
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pa1(t) = p1a(t),  p3r(t) = pis(t),  paalt) = pas(t) . 0.6

Solving this set of equations by analogy with Sec. 3.1.1,
one can calculate the temporal dependence of the popula- .
tions of theA-system levels.
The temporal dynamics of forming the spectrum of the
dark resonance at the fixed modulation frequency and for
two values of the modulation index is shown in Fig. 5.

units

0.08 1

ng, arb
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W

Simple analysis of this dynamics shows that with increas-

ing the modulation index the structure of the spectrumis ,, il

enriched and the number of sideband resonances is in- '%/0//7"'///'////;/1"///”'///
i

creased, too. o /'//

o

il ]
o | | ) At
Qualitatively, the mechanism of forming the additional % /l,,'/ i
dark resonances in the spectrum ofl.aystem under the
action of a frequency-modulated laser field is clarified in
Fig. 6. Every time a narrow dark resonance is formed when
the frequency splitting,,»> between two ground levels of
the A-system exactly matches the frequency difference be- 30
tween two neighboring sidebands in the spectrum of the
incident frequency-modulated laser field. All pairs of the
components of the incident laser field spectrum with the AR
frequency shift between them equal to the modulation fre- 5 ",';"W’;%ﬁuw 0 R ’,/
quency!? (for instance, the pair marked by the solid line 00811~ : ||"| ! el ’ I i /l"i’;”"‘
‘ | ity
J

l iy
with arrows in Fig. 6) contribute to the dark resonance for "":", |
which w1, = 2. Also, all the pairs of the components "l:",':
of the incident laser field spectrum frequency shift be-
tween which is equal to the doubled modulation frequency
212 (for example, the pair marked with the dashed lines
with arrows in Fig. 6) contribute to the dark resonance for
which w5 = 22 and so on. From this consideration it
follows that the frequency shift between the neighboring
resonances in the observed spectrum of Akgystem is 0
equal to the modulation frequency.

The resulting rather complicated spectrum of the
system irradiated with the FM resonant laser field is shown
in Fig. 7, which plots the population of the excited state of
the A-system versus the, frequency at the fixed mod-
ulation frequency? = 2 for various values of the mod-
ulation index. AtM = 0, we have no modulation at all
and the dark resonance is observedat = 0, i.e., we Figure 5 Excited state population of thé-system versus time
have the case of degeneratdesystem. Increasing fur- since the excitation of the system ang, at the fix_ed modulation
ther the modulation index leads to appearing of additionaiequency:? = 2 for two values of the modulation inde}’ =
resonances in the spectrum at the conditions = n.2, 1.5 (@) andM = 4 (b). Other parameters were chosen as follows:

n = +1,42,43,.... This is because the number of side- (3 = (03 =08, 31 =52 =1
bands in the spectrum of the incident laser field increases

with increasing the modulation index in accordance with

Eq. (14).

Amplitudes of these sidebands in the spectrum of theAt A/ = 10 (Fig. 8b), the resonances at the frequencies
incident FM laser field are proportional to the Bessel func-w,, = ££2, £3£2, and+642 are vanished, as well. This
tions J,, (M) at the fixed value of the modulation indéx happens because the two-photon dark resonances are ob-
and decreasing up to zero with increasing herefore, the  served on the background of the one-photon ones. As it has
number of sidebands in the spectrum of the incident lasebeen shown in [19], for example, the power of the modu-
field in the central part of the spectrum is approximately lated signal transmitted through the media is proportional
equal to)M . Respectively, the resulting spectrum of the  to the squared Bessel functioff (M) for the givenM.
system shows also approximately dark resonances in Keeping in mind that the Bessel function takes zero values
the central part of the spectrum. Fig. 8 confirms this resultatn = &2 for M = 5and ath = 41, &3, &6 for M = 10,

One can clearly see that &f = 5 (Fig. 8a) the reso- this clarifies why the resonances at the frequenciegor
nance at the frequeney,o = +2(2 practically vanishes. these values of are practically vanished.
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Figure 6 Mechanism of forming the dark resonances for the case wpolY

of the A-system interacting with the FM laser field
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Figure 8 Population of the excited state in the symmetdic
system versusu2 for two fixed values of the modulation in-
dex M = 5 (a) andM = 10 (b) at the modulation frequency
2 = 6 a.u. and the Rabi frequenci€s = (2,3 = 0.8. Insets
show the respected squared Bessel functii§\/)

Figure 7 (online color at www.Iphys.org) Excited state popu- gtjtyting(; andC, (from Sec. 3.1.2) in this equation leads
lation versuswi2 and the modulation inde®/. Other param- to the hamiltonian of the form:

eters were chosen as follow® = 2, {213 = (23 = 0.8,

Y31 =72 =7 =1 . 0 0 eZ:A(t)ng
H= 0 —wig PO |, (17)
eiiA(t).ng eiiA(t)Qgg o —iI”
322.0 ) ) vsi where
.2.2. Quantum trajeCtOl'leS analysis
A(t) = Msin 02t p= et Y31 =32 =7

2 )

From the Schidinger equation (6) one can readily ob-

“tain the following set of differential equations for the prob-
ability amplitudesu (t), a2(t), andas(t):

In accordance with the results of Sec. 2.2, the non
hermitian interaction hamiltonian of thé-system inter-
acting with the frequency-modulated laser fidldt) =

Eq expli(wot + M cos £2t)] 4 c.c. is given by Eq. (7). Sub- 4, (t) = —ie™*® 213a5(t) (18)
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Letters

(IQ (t) = —i[—wlgag (t) + eiA(t) Qggagg (f)] s
ag(t) = 7’L'[eiA(t) ngag(t) —+ eiA(t) QQgCLQ(t)+

+(—il" + dL)as(t)] . 2
Let us assume by analogy with Sec. 3.1.2 that at the
initial time momentt = 0 all population in the system
is distributed in between two ground levels and |2),
i.e.,n; = ny = 0.5. Then, solving set of equations (18)
with the help of quantum trajectories technique we will
receive time-dependent wave-functions of the system and
time-dependent populations of each of the energetic levels.
Temporal dependency of the population of the excited
state calculated with the help of quantum trajectories ver-
sus the frequency spacing between two ground levels
is shown in Fig. 9. The calculations were done for the same
parameters as similar calculations by density matrix ap-
proach (Sec. 3.2.1). Comparison of both these methods
is shown in Fig. 9b. One can easily see from this figure
that results obtained by two different methods are in good 0.2
agreement. Some quantitative difference is because the
number of calculated trajectories is not an infinitive one,  0.10 -
but equal only to 5000. Increasing the number of trajecto-
ries in a computer experiment will lead to more precise £ 098 1
coincidence of the results, but is timeconsuming. How- %
ever, even our results show that the quantum trajectoriess **
technique can be adequately used for simulating not only &
three level system ial-configuration interacting with the =00
frequency-modulated field, but also can be used for simu-
lating more complicated multilevel systems.

—— Quantum trajectories

4. Conclusions 16 12

In conclusion, we have presented a theoretical model
for the FM-spectroscopy of the coherent dark reso-Figure9 a) Excited state population of thesystem versus time
nances on example of a three-level quantum system isince the excitation of the system ang, at the fixed modula-
A-configuration driven by resonant laser field with and tion frequencyf? = 2 for the modulation index\/ = 4. Other
without frequency modulation using two simulation tech- parameters were chosen as follow& = (23 = 0.8, I' = 1.
niques — the density matrix and quantum trajectories analb) Excited state population of thé-system versus» for the
ysis. With these techniques, such physical quantities agarameters of (a) computed with the help of density matrix ap-
the total fluorescence intensity in equilibrium and in the Proach (solid line) and quantum trajectories techniques (dashed
transient response, resonance fluorescence spectrum, liff2€)- The number of computed trajectories is equal to 1000
ear and nonlinear absorption coefficients, and the refrac-
tive indices, which can be all measured experimentally,
can be modeled within the frame of the proposed model.

As an example, we calculated the total absorption for
the real atomicl-system formed of the Zeeman sublevels
of one of the two alkali hyperfine ground states in Cs Our future work will be concentrated on elaboration
atoms. The calculated spectrum using such a simplifie®f more complex model, where a larger number of exper-
model is in a qualitative agreement with the experimentalimental parameters will be considered. Moreover, we plan
results reported in the literature [9, 10] and itis clearly seent0 extend the model by considering a richer level struc-
that at high laser modulation index additional side CPT-ture, which is well reasonable using the method of quan-
resonances are present. Their frequency positions matchédm trajectories analysis, whose computing time increases
the experimental ones and it can be seen that CPT resdinearly with the numbetV of the considered levels, in
nance appear wheny{?2 (Wheren is an integer number) Cpntrast Wlth the quadratic dependency shown by the den-
equals the Zeeman splitting of two sublevels. sity matrix approach.
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