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Abstract: Dynamics of a three-level quantum system inΛ-
configuration driven by a resonant laser field with and without
frequency modulation (FM) is studied for the first time in detail
using two simulation techniques – the density matrix and quan-
tum trajectories analysis. This analysis was applied to the FM-
spectroscopy of coherent dark resonances in Cs atoms and com-
puter simulation results for the absorption spectra are in qualita-
tive agreement with those taken in an experiment.
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Mechanism of forming the dark resonances for the case of the
Λ-system interacting with the frequency-modulated laser field
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1. Introduction

The coherent population trapping (CPT) phenomenon is
currently widely used in different applications such as
magnetometry, metrology, and others [1–6]. It is most con-
spicuous for theΛ-system formed of two closely spaced
long lived levels optically coupled to a third distant short
lived level by two continuous coherent radiation fields
(Fig. 1). In absorption spectra, coherent superposition of
the closely spaced levels leads to a very narrow dip of
induced transparency or, equivalently, to a non-absorbing
dark resonance when the resonance fluorescence is ob-
served.

The basics of CPT phenomenon are well understood in
the frame of three-level analytical model [7]. For the case
of multilevel systems, however, such simple model has to
be significantly complicated and analytical results in most
cases became impossible [8]. Enriched energetic structure

of multilevel atoms, especially in the presence of an exter-
nal magnetic field, also results in essential modification of
the resonance dependencies on the parameters of the fields
driving the system.

Despite the conventional experimental technique for
observing the dark resonances spectra with the use of two
resonant laser fields described above is now widely used
for many applications, still there is a need in elaborat-
ing simpler experimental techniques, which would, for in-
stance, employ only one laser field, but with frequency
modulation (FM), that also allow spectroscopy of the co-
herent dark resonances in multilevel atoms. Such experi-
ments are conducted by the group of Prof. L. Moi at the
University of Siena in Italy [9] and they, in fact, initiated
the current theoretical study of interaction between the
three-level system inΛ-configuration with the frequency-
modulated laser field.

∗ Corresponding author: e-mail: zadkov@phys.msu.ru

c© 2006 by Astro Ltd.
Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA



2 J. Vladimirova, B. Grishanin, et al.: Computer modeling of frequency-modulation spectra

In a typical experiment on FM-spectroscopy of co-
herent dark resonances of Cs atoms, the atomic media is
placed in a homogeneous magnetic field, which value is
in the range of few10 µT. The coherent resonance is ob-
served when the laser emission, which is frequency modu-
lated, contains in its spectrum frequency components that
are in resonance with the atomic levels, i.e., the frequency
difference between these components matches the Zeeman
splitting ω12 of the ground-state sublevels (Fig. 1) due to
the presence of dc magnetic field. The laser spectrum is
tailored via diode laser frequency modulation obtained by
direct modulation of the laser junction current. The coher-
ent structure can be then seen scanning the modulation fre-
quency in a small range around the two-photon resonance
condition, or at a fixed modulation frequency scanning the
magnetic field in the corresponding range [9–12].

Despite obvious simplicity of this method and numer-
ous applications of FM-techniques in microwave, NMR,
and optical spectroscopy [13], analysis of the spectrum be-
comes a separate problem as a theoretical model for the
FM-spectroscopy of dark resonances does not exist to our
knowledge so far1.

In this paper, we present a detailed study of the dy-
namics of a three-level quantum system inΛ-configuration
driven by resonant laser field with and without frequency
modulation using two computer simulation techniques –
the density matrix and quantum trajectories analysis. Our
studies show that analytical consideration of the problem
is impossible in this case.

The paper is organized as follows. General theoretical
background for both density matrix and quantum trajec-
tories analysis used for numerical simulation of the flu-
orescence and absorption spectra of the drivenΛ-system
is given in Sec. 2. In Sec. 3 two considered above com-
puter simulation techniques are applied for the analysis of
a drivenΛ-system in both cases, when the frequency mod-
ulation is switched off (Sec. 3.1) and on (Sec. 3.2), respec-
tively. Calculations are made for the absorption intensity.
Finally, the conclusions are summarized in Sec. 4.

2. Theoretical analysis of temporal dynamics
of a driven Λ-system

In experiments on FM-spectroscopy of coherent dark res-
onances, the total absorption/transmittion of theΛ-system
is measured. The total absorption in case when the relax-
ation processes in the system are only due to the decay of
the upper state is equal to the losses thanks to the fluo-
rescence. Total intensity of the spontaneous fluorescence

1 It is worth to note that interaction of a two-level system with
FM-field has been studied in detail, even in analytical form [13].
Further generalization of the theory onto the case of multilevel
systems, three-level systems specifically, does not exist to our
knowledge so far.

is proportional to the stationary value of the excited state
population:

Ifl ∼ 〈n̂3〉 = Tr n̂3ρ̂ . (1)

Therefore, calculation of the total absorption of theΛ-
system is reduced to the calculation of the excited state
populationn3.

In this section, we will focus on the numerical simu-
lation techniques, which can be adequately used for sim-
ulating fluorescence/absorption spectrum of both a model
Λ-system and a multilevel atom driven by the FM laser
field(s). With these notes in mind, there exist two key
computer simulation techniques suitable for our purpose,
namely, the technique based on the solving the master
equations for the density matrix (we will call it theden-
sity matrix analysis) and quantum trajectories technique
(we will call it thequantum trajectoriesanalysis) [14–17].

In application to the analysis of multilevel atomic sys-
tems, the key difference between these two techniques is
outlined below. The density matrix technique is used pri-
marily for analysis of atomic systems with rather limited
numberN of energy levels because the numberN2 of
master equations describing the system can became too
large for real multilevel atoms (like Cs or Rb) and, there-
fore, such analysis would require relevant computer re-
sources. By contrast, the quantum trajectories analysis of
the multilevel atomic system with large numberN of en-
ergy levels requires computational resources proportional
to N and, therefore, has an advantage here. Despite this
difference, each of the two techniques has its own ad-
vantages and drawbacks, so that we intentionally consider
both of them to clarify which one is better and in which
situation.

2.1. Density matrix analysis

We will start with the density matrix analysis, when the
dynamics of a quantum system is described with the den-
sity matrix time dependence of which is defined by the
following kinetic, i.e.,master equation:

˙̂ρ = − i

h̄
[Ĥ, ρ̂] + Lrρ̂ , (2)

where first term in the right part of the equation describes
reversible dynamics of the system with the hamiltonianĤ
and second term – nonreversible contribution to the dy-
namics due to the stochastic interaction of the system with
the reservoir, which is described with the relaxation super-
operatorLr. In assumption that interaction of the system
with the reservoir can be described with a diffusion type
process, the relaxation superoperator can be represented
by the secondary commutator with the hamiltonianĤξ of
the system-reservoir interaction, averaged over the reser-
voir noiseξ̂(t).
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Figure 1 (online color at www.lphys.org)Λ systems formed of the Zeeman sublevels in theFg = 3 → Fe = 2 transitions excited by
theσ+ andσ− components of the respective frequenciesω1 andω2, whose difference is equal to the splitting of the Zeeman sublevels
with ∆mF = 2. Three-level system inΛ-configuration has the following parameters:ωL1, ωL2 are the frequencies of the laser fields
driving transitions of the system;Ω13, Ω23 are the respective Rabi frequencies;δL is the frequency detuning from the|1〉 ↔ |3〉
transition;γ31, γ32 are the decay rates from excited state|3〉 onto the low-laying levels|1〉 and |2〉; γ12 andw are the decay and
pumping rates of the level|1〉 via the level|2〉, correspondingly;Γ31, Γ32, andΓ12 are the dephasing rates for the transitions|1〉 ↔ |3〉,
|2〉 ↔ |3〉, and|1〉 ↔ |2〉, respectively

Then, the relaxation termLrρ in master equation (2)
can be written in the general Lindblad form [18] as

Lr =−1
2

∑
m

(Ĉ+
mĈm ¯+¯ Ĉ+

mĈm)+
∑
m

Ĉm ¯ Ĉ+
m , (3)

where¯ is the substitution symbol to be replaced with the
density matrixρ̂, operatorsĈm describe interaction with
the reservoir, operatorŝC+

m are conjugated to the operators
Ĉm and both of them have dimension(1/t)1/2.

It is worth to note that representation (3) preserves in-
terpretation of̂ρ as the density matrix, i.e., the normaliza-
tion conditionTr ρ̂ = 1 and positivity of the probability
〈ψ|ρ̂|ψ〉 to find the system in any state|ψ〉 are fulfilled
at any time moment and for any initial statesρ̂(t = 0).
Note also that Eq. (3) does not require thatĈm must be de-
fined uniquely when they are chosen phenomenologically
to represent an a’priori known relaxation process.

In the right side of Eq. (3) providing the total proba-
bility contribution (d/dt)Trρ̂dt ≡ 0 the first sum is the
anti-commutator, which consists of the terms decreasing
the total populationTrρ̂, as far as the second sum increases
it. The number of operatorŝCm in Eq. (3) in general case
can be rather large because each operator corresponds to a
specific decay channel. For the case of spontaneous emis-
sion in a two-level system, for instance, there exists only
one operator because we consider only one decay chan-
nel, i.e., spontaneous decay. This operator has the form
Ĉ1 = Γ 1/2σ̂−, whereσ̂− = |g〉〈e| is the atomic transi-
tion operator from the ground state|g〉 onto the excited
state|e〉. More examples are described in [17].

For the case of aΛ-system, in order to write the oper-
atorsĈm one has to take into account the following relax-
ation processes: spontaneous decay from the excited state
|3〉, incoherent decay and incoherent pumping of the two
ground levels|1〉, |2〉. OperatorĈm in this case will consist
of four terms responsible for the above listed relaxation
processes, namely, operatorsĈ1 andĈ2 describe sponta-
neous decay from the excited state|3〉 onto the ground
states|1〉, |2〉, operatorsĈ3 and Ĉ4 describe incoherent
decay and incoherent pumping of the level|1〉 to the level
|2〉:

Ĉ1 = (γ31)1/2P̂13 , C+
1 = (γ31)1/2P̂31 , (4)

Ĉ2 = (γ32)1/2P̂23 , C+
2 = (γ32)1/2P̂32 ,

Ĉ3 = (γ21)1/2P̂12 , C+
3 = (γ21)1/2P̂21 ,

Ĉ4 = (µ12)1/2P̂21 , C+
4 = (µ12)1/2P̂12 ,

where P̂kl are the transition operators, which are repre-
sented, in general case, by the matrices with the only non-
zerokl-elementP̂kl(k, l) = 1.

With the help of Eqs. (3), (4) the relaxation termLrρ̂
in master equation (2) takes the form:



α1 α2 α3

α4 α5 α6

α7 α8 α9


 , (5)

whereα1 = −µ12ρ11(t) + γ21ρ22(t) + γ31ρ33(t), α2 =
−0.5(γ21+µ12)ρ12(t), α3 = −0.5(γ31+γ32+µ12)ρ13(t),
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Figure 2 Temporal dependence of the excited state population
from a drivenΛ-system calculated with the help of density ma-
trix approach (a) and using quantum trajectories technique (b).
Both plots show similar dependence of the excited state popu-
lation n3 versus time since the excitation of the system and the
ground state frequency splittingω12. For simplicity, the calcula-
tions were made for the case of a symmetricΛ-system, i.e., for
the equal Rabi frequenciesΩ13 = Ω23 = 1 and equal sponta-
neous decay ratesγ31 = γ32 = γ = 1 from the excited state;
relaxation parameters of the ground state were set to zero. The
number of computed quantum trajectories for figure (b) is equal
to 2000

α4 = −0.5(γ21 + µ12)ρ12(t), α5 = µ12ρ11(t) −
γ21ρ22(t)+γ32ρ33(t), α6 = −0.5(γ31+γ32+γ21)ρ23(t),
α7 = −0.5(γ31 + γ32 + µ12)ρ13(t), α8 = −0.5(γ31 +
γ32 + γ21)ρ23(t), α9 = −(γ31 + γ32)ρ33(t), andγ31, γ32

are the spontaneous decay rates,γ12 andµ12 are the de-

cay and pumping rates of the level|1〉 via the level|2〉,
respectively.

Now, master equation (2) can be integrated numeri-
cally for a given HamiltonianĤ of the system and then
all its necessary characteristics can be modeled.

2.2. Quantum trajectories analysis

Another relevant approach to model the temporal behavior
of aΛ-system is the quantum trajectories analysis [14–17],
which uses, instead of the time-dependent density matrix,
a properly defined statistically-equivalent stochastic tem-
poral dynamics of the wave function with the following
averaging of the results by analogy with the Monte-Carlo
method.

Modeling evolution of the wave function on the dis-
cretization intervaldt, which ensures identical results with
the solution of the master equation (2), includes two parts:
i) modeling continuous variation of the current state and ii)
modeling quantum jumps occurring randomly with certain
probability.

Let us assume that the system at timet is in the state
|ψ(t)〉. Then, the continuous variation of the current state
can be described with the temporal dynamics of the wave
function |ψ(1)(t)〉, which is governed by the Schrödinger
equation
∣∣∣ψ(1)(t + δt)

〉
≈

(
1 +

1
ih̄

ˆ̃Hdt

)
|ψ(t)〉 (6)

with the non-hermitian hamiltonian

ˆ̃H = Ĥ − ih̄

2

∑
m

Ĉ+
mĈm . (7)

New wave-function is not normalized because the
hamiltonianH̃ is a non-hermitian one and the squared
norm of the function is equal to〈ψ(1)(t+dt)|ψ(t+dt)〉 =
1− δp, whereδp has the form:

δp =
∑
m

δpm = dt
∑
m

〈ψ(t)|Ĉ+
mĈm|ψ(t)〉 , (8)

where the time stepdt must fulfill the inequalityδp ¿ 1.
Random behavior of the wave function is described

with the probabilityδp of quantum jumps. If the quan-
tum jump does not occur with the probability1 − δp, the
wave function|ψ(1)(t + δt)〉 must be renormalized to unit
and then it will be mapped with the corresponding nor-
malized function|ψ(t+ δt)〉. When the quantum jump oc-
curs, the wave-function transfers into the stateCm|ψ(t)〉
with the related probabilityδpm/δp. Thus, at the time mo-
mentt + δt we do have one of the two normalized wave-
functions:

- with the probability1− δp the quantum jump does not
occur and|ψ(t + δt)〉 = |ψ(1)(t + δt)〉(1− δp)−1/2,

- with the probabilityδpm the quantum jump occurs and
|ψ(t + δt)〉 = Ĉm|ψ(t)〉(δpm/δt)−1/2.
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3. Modeling absorption of a drivenΛ-system

3.1. Case when the frequency modulation is
switched off

Before studying interaction of aΛ-system with the FM
laser field, let us first analyze a simpler problem – how
theΛ-system interacts with a resonant laser field without
frequency modulation.

3.1.1. Density matrix analysis

Let us consider a three-level quantum system inΛ-
configuration, which interacts with the fieldE(t) =
E0 cos(ω0t + ϕ). In the basis of the atom energy states
|1〉, |2〉, |3〉 and at the choice of the unperturbed atomic
motion in the form of the free precession of the|3〉 state
with the laser frequencyω0 the interaction hamiltonian has
the form:

Ĥ =
h̄

2




0 0 Ω13

0 −ω12 Ω23

Ω13 Ω23 δL


 , (9)

whereΩ13, Ω23 are the Rabi frequencies,δL = ω0−ω13 is
the one-photon frequency detuning of the probe laser field,
andω12 is the frequency shift between the two ground lev-
els (see Fig. 1).

Substituting relaxation operator (3) in Eq. (2) we re-
ceive the following set of differential equations for essen-
tial density matrix elements:

ρ̇11(t) = −µ12ρ11(t) + γ21ρ22(t) + γ31ρ33(t)+ (10)

+i[Ω13ρ13(t)−Ω13ρ31(t)] ,

ρ̇12(t) = −Γ12ρ12(t)− i[ω12ρ12(t) + Ω23ρ13(t)−
−Ω13ρ32(t)] ,

ρ̇13(t) = −Γ13ρ13(t) + i[Ω13ρ11(t) + Ω23ρ12(t)+

+δLρ13(t)−Ω13ρ33(t)] ,

ρ̇22(t) = µ12ρ11(t)− γ21ρ22(t) + γ32ρ33(t)+

+i[Ω23ρ23(t)−Ω23ρ32(t)] ,

ρ̇23(t) = −Γ32ρ23(t) + i[Ω13ρ21(t) + Ω23ρ22(t)+

+ω12ρ23(t) + δLρ23(t)−Ω23ρ33(t)] ,

ρ̇33(t) = i[−Ω13ρ13(t)−Ω23ρ23(t) + Ω13ρ31(t)+

+Ω23ρ32(t)]− (γ31 + γ32)ρ33(t) ,

ρ̇21(t) = ρ̇∗12(t) , ρ̇31(t) = ρ̇∗13(t) , ρ̇32(t) = ρ̇∗23(t) .

Integrating this set of differential equations we obtain
a complete picture of temporal dynamics of the drivenΛ-
system and can calculate any its characteristic. As soon as
we are interested in the total absorption of theΛ-system,

which is proportional to the excited state population, one
needs simply to calculate the population (1) of the excited
state|3〉. This temporal dependency is shown in Fig. 2a
versus the frequency splittingω12 between two ground lev-
els.

From Fig. 2 one can see that for the case when only
one laser field with the frequencyωL acts on both transi-
tions |1〉 ↔ |2〉 and |2〉 ↔ |3〉 of theΛ-system, the dark
resonance is observed atω12 = ωL − ωL = 0, i.e., for the
case of degenerateΛ-system. In experiment, such a reso-
nance corresponds to the case when an external magnetic
field is applied to produce the field depending frequency
splitting of the ground state sublevels.

3.1.2. Quantum trajectories analysis

We will consider only two actually essential radiation de-
cay channels from excited state|3〉 onto the low-lying
states|1〉, |2〉, reducing the number of operatorŝCm in
Eq. (3) just to two operators:̂C1 = (γ31)1/2P̂13 and
Ĉ2 = (γ32)1/2P̂23.

InsertingĈ1 andĈ2 into Eq. (3), we obtain the follow-
ing equation for the relaxation term:

Lrρ̂ =




γ31ρ33(t) 0 −Γρ13(t)
0 γ32ρ33(t) −Γρ23(t)

−Γρ13(t) −Γρ23(t) −2Γρ33(t)


 , (11)

whereΓ = (γ31 + γ32)/2. In accordance with the results
of Sec. 2.2, the non-hermitian interaction hamiltonian is
given by Eq. (7). SubstitutinĝC1 andĈ2 in this equation
leads to the hamiltonian of the form:

ˆ̃H =
h̄

2




0 0 Ω13

0 −ω12 Ω23

Ω13 Ω23 −iΓ + δL


 , (12)

where we assume thatγ31 = γ32 = γ.
From the Schr̈odinger equation (6) one can readily ob-

tain the following set of differential equations for the prob-
ability amplitudesa1(t), a2(t), anda3(t):

ȧ1(t) = −iΩ13a3(t) , (13)

ȧ2(t) = −i[−ω12a2(t) + Ω23a3(t)] ,

ȧ3(t) = −i[Ω13a3(t) + Ω23a2(t) + (−iΓ + δL)a3(t)] .

Let us assume then that initially att = 0 all population
in the system was equally distributed among the states|1〉
and |2〉, i.e.,n1 = n2 = 1/2. Then, the set of equations
(13) can be integrated using the quantum trajectories tech-
nique, which leads to the time-dependent wave-functions
and, respectively, to the temporal dependencies of the pop-
ulation of the system’s levels.

Temporal dependency of the excited state population
calculated with the help of quantum trajectories technique
is shown in Fig. 2b versus the frequency detuningω12 of
the two ground states. From Fig. 2b one can clearly see
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Figure 3 (online color at www.lphys.org) Calculated population
of the excited state of the symmetricΛ-system (γ31 = γ32 = γ,
Γ = 1) versusω12 for Ω13 = Ω23 = 1 received with the help
of density matrix approach (solid line) and quantum trajectories
technique (dotted line, the number of computed trajectories is
equal to 2000) att/Γ = 14, i.e., in the steady-state case

that the stationary solution is reached at the time of the
order of10γ.

A more detailed comparison of the simulation results
obtained by the density matrix approach and with quantum
trajectories technique is shown in Fig. 3. It clearly shows
that both methods give similar results and the curves are
coincide rather well.

3.2. Case when the frequency modulation is
switched on

In this Section, we will analyze the absorption spectrum of
the Λ-system driven by a resonant frequency-modulated
laser fieldE(t) with the carrier frequencyω0, which for
the case of harmonic modulation with the modulation in-
dexM and frequency modulationΩ can be written as

E(t) = E0 exp[i(ω0t + M sin Ωt)] = (14)

= E0 exp(iω0t)
+∞∑

n=−∞
Jn(M) exp(inΩt) .

In this series expansion, the Bessel functionsJn(M)
characterize the frequency components of the frequency-
modulated light, i.e., the amplitudes of the respective spec-
trum components are proportional to the Bessel functions
for the fixed modulation indexM . Fig. 4 shows how the
spectrum changes with changing the modulation index
M and the modulation frequencyΩ. When the modula-
tion frequencyΩ is fixed, increasing the modulation index
leads to the increasing the number of bands in the spectrum
with the interbands distance being equal toΩ.

M

Ω
ω0

ω0

ω0

ω0

Figure 4 (online color at www.lphys.org) Modification of the
spectrum of the the frequency-modulated laser field due to the
variations in the modulation frequencyΩ and the modulation in-
dexM . Increasing the modulation indexM enlarges the number
of sidebands in the spectrum, whereas increasing the modulation
frequencyΩ enlarges the frequency separation between the side-
bands

3.2.1. Density matrix analysis

The interaction hamiltonian of theΛ-system interact-
ing with the frequency-modulated laser fieldE(t) =
E0 exp[i(ω0t + M cos Ωt)] + c.c. has the form:

Ĥ =




0 0 ei∆(t)Ω13

0 −ω12 ei∆(t)Ω23

e−i∆(t)Ω13 e−i∆(t)Ω23 δL


 , (15)

where∆(t) = M sin Ωt. Inserting equation forLr(ρS) in
the form (5) into Eq. (2), we obtain the following set of
differential equations:

ρ̇11(t) = −µ12ρ11(t) + γ21ρ22(t) + γ31ρ33(t)+ (16)

+i[e−i∆(t)Ω13ρ13(t)− ei∆(t)Ω13ρ31(t)] ,

ρ̇12(t) = −Γ12ρ12(t) + i[−ω12ρ12(t)+

+e−i∆(t)Ω23ρ13(t)− e−i∆(t)Ω13ρ32(t)] ,

ρ̇13(t) = −Γ13ρ13(t) + i[ei∆(t)Ω13ρ11(t) + δLρ13(t)+

+ei∆(t)Ω23ρ12(t)− ei∆(t)Ω13ρ33(t)] ,

ρ̇22(t) = µ12ρ11(t)− γ21ρ22(t) + i[e−i∆(t)Ω23ρ23(t)−
−ei∆(t)Ω23ρ32(t)] + γ32ρ33(t) ,

ρ′23(t) = −Γ23ρ23(t) + i[Ω13ρ21(t) + ei∆(t)Ω23ρ22(t)+

+δLρ23(t) + ω12ρ23(t) + ei∆(t)Ω23ρ33(t)] ,

ρ̇33(t) = i[−e−i∆(t)Ω13ρ13(t)− e−i∆(t)Ω23ρ23(t)+

+ei∆(t)Ω13ρ31(t) + ei∆(t)Ω23ρ32(t)]−
−(γ31 + γ32)ρ33(t) ,

c© 2006 by Astro Ltd.
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ρ̇21(t) = ρ̇∗12(t) , ρ̇31(t) = ρ̇∗13(t) , ρ̇32(t) = ρ̇∗23(t) .

Solving this set of equations by analogy with Sec. 3.1.1,
one can calculate the temporal dependence of the popula-
tions of theΛ-system levels.

The temporal dynamics of forming the spectrum of the
dark resonance at the fixed modulation frequency and for
two values of the modulation index is shown in Fig. 5.
Simple analysis of this dynamics shows that with increas-
ing the modulation index the structure of the spectrum is
enriched and the number of sideband resonances is in-
creased, too.

Qualitatively, the mechanism of forming the additional
dark resonances in the spectrum of aΛ-system under the
action of a frequency-modulated laser field is clarified in
Fig. 6. Every time a narrow dark resonance is formed when
the frequency splittingω12 between two ground levels of
theΛ-system exactly matches the frequency difference be-
tween two neighboring sidebands in the spectrum of the
incident frequency-modulated laser field. All pairs of the
components of the incident laser field spectrum with the
frequency shift between them equal to the modulation fre-
quencyΩ (for instance, the pair marked by the solid line
with arrows in Fig. 6) contribute to the dark resonance for
which ω12 = Ω. Also, all the pairs of the components
of the incident laser field spectrum frequency shift be-
tween which is equal to the doubled modulation frequency
2Ω (for example, the pair marked with the dashed lines
with arrows in Fig. 6) contribute to the dark resonance for
which ω12 = 2Ω and so on. From this consideration it
follows that the frequency shift between the neighboring
resonances in the observed spectrum of theΛ-system is
equal to the modulation frequencyΩ.

The resulting rather complicated spectrum of theΛ-
system irradiated with the FM resonant laser field is shown
in Fig. 7, which plots the population of the excited state of
the Λ-system versus theω12 frequency at the fixed mod-
ulation frequencyΩ = 2 for various values of the mod-
ulation index. AtM = 0, we have no modulation at all
and the dark resonance is observed atω12 = 0, i.e., we
have the case of degeneratedΛ-system. Increasing fur-
ther the modulation index leads to appearing of additional
resonances in the spectrum at the conditionsω12 = nΩ,
n = ±1,±2,±3, . . .. This is because the number of side-
bands in the spectrum of the incident laser field increases
with increasing the modulation index in accordance with
Eq. (14).

Amplitudes of these sidebands in the spectrum of the
incident FM laser field are proportional to the Bessel func-
tionsJn(M) at the fixed value of the modulation indexM
and decreasing up to zero with increasingn. Therefore, the
number of sidebands in the spectrum of the incident laser
field in the central part of the spectrum is approximately
equal toM . Respectively, the resulting spectrum of theΛ-
system shows also approximatelyM dark resonances in
the central part of the spectrum. Fig. 8 confirms this result.

One can clearly see that atM = 5 (Fig. 8a) the reso-
nance at the frequencyω12 = ±2Ω practically vanishes.
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Figure 5 Excited state population of theΛ-system versus time
since the excitation of the system andω12 at the fixed modulation
frequencyΩ = 2 for two values of the modulation indexM =
1.5 (a) andM = 4 (b). Other parameters were chosen as follows:
Ω13 = Ω23 = 0.8, γ31 = γ32 = 1

At M = 10 (Fig. 8b), the resonances at the frequencies
ω12 = ±Ω, ±3Ω, and±6Ω are vanished, as well. This
happens because the two-photon dark resonances are ob-
served on the background of the one-photon ones. As it has
been shown in [19], for example, the power of the modu-
lated signal transmitted through the media is proportional
to the squared Bessel functionJ2

n(M) for the givenM .
Keeping in mind that the Bessel function takes zero values
atn = ±2 for M = 5 and atn = ±1,±3,±6 for M = 10,
this clarifies why the resonances at the frequenciesnΩ for
these values ofn are practically vanished.
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Figure 6 Mechanism of forming the dark resonances for the case
of theΛ-system interacting with the FM laser field
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Figure 7 (online color at www.lphys.org) Excited state popu-
lation versusω12 and the modulation indexM . Other param-
eters were chosen as follows:Ω = 2, Ω13 = Ω23 = 0.8,
γ31 = γ32 = γ = 1

3.2.2. Quantum trajectories analysis

In accordance with the results of Sec. 2.2, the non-
hermitian interaction hamiltonian of theΛ-system inter-
acting with the frequency-modulated laser fieldE(t) =
E0 exp[i(ω0t+M cos Ωt)]+c.c. is given by Eq. (7). Sub-
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Figure 8 Population of the excited state in the symmetricΛ-
system versusω12 for two fixed values of the modulation in-
dex M = 5 (a) andM = 10 (b) at the modulation frequency
Ω = 6 a.u. and the Rabi frequenciesΩ3 = Ω23 = 0.8. Insets
show the respected squared Bessel functionsJ2

n(M)

stitutingĈ1 andĈ2 (from Sec. 3.1.2) in this equation leads
to the hamiltonian of the form:

ˆ̃H =




0 0 ei∆(t)Ω13

0 −ω12 ei∆(t)Ω23

e−i∆(t)Ω13 e−i∆(t)Ω23 δL − iΓ


 , (17)

where

∆(t) = M sin Ωt , Γ =
γ31 + γ32

2
, γ31 = γ32 = γ .

From the Schr̈odinger equation (6) one can readily ob-
tain the following set of differential equations for the prob-
ability amplitudesa1(t), a2(t), anda3(t):

ȧ1(t) = −iei∆(t)Ω13a3(t) , (18)
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ȧ2(t) = −i[−ω12a2(t) + ei∆(t)Ω23a3(t)] ,

ȧ3(t) = −i[ei∆(t)Ω13a3(t) + ei∆(t)Ω23a2(t)+

+(−iΓ + δL)a3(t)] .

Let us assume by analogy with Sec. 3.1.2 that at the
initial time momentt = 0 all population in the system
is distributed in between two ground levels|1〉 and |2〉,
i.e., n1 = n2 = 0.5. Then, solving set of equations (18)
with the help of quantum trajectories technique we will
receive time-dependent wave-functions of the system and
time-dependent populations of each of the energetic levels.

Temporal dependency of the population of the excited
state calculated with the help of quantum trajectories ver-
sus the frequency spacing between two ground levelsω12

is shown in Fig. 9. The calculations were done for the same
parameters as similar calculations by density matrix ap-
proach (Sec. 3.2.1). Comparison of both these methods
is shown in Fig. 9b. One can easily see from this figure
that results obtained by two different methods are in good
agreement. Some quantitative difference is because the
number of calculated trajectories is not an infinitive one,
but equal only to 5000. Increasing the number of trajecto-
ries in a computer experiment will lead to more precise
coincidence of the results, but is timeconsuming. How-
ever, even our results show that the quantum trajectories
technique can be adequately used for simulating not only
three level system inΛ-configuration interacting with the
frequency-modulated field, but also can be used for simu-
lating more complicated multilevel systems.

4. Conclusions

In conclusion, we have presented a theoretical model
for the FM-spectroscopy of the coherent dark reso-
nances on example of a three-level quantum system in
Λ-configuration driven by resonant laser field with and
without frequency modulation using two simulation tech-
niques – the density matrix and quantum trajectories anal-
ysis. With these techniques, such physical quantities as
the total fluorescence intensity in equilibrium and in the
transient response, resonance fluorescence spectrum, lin-
ear and nonlinear absorption coefficients, and the refrac-
tive indices, which can be all measured experimentally,
can be modeled within the frame of the proposed model.

As an example, we calculated the total absorption for
the real atomicΛ-system formed of the Zeeman sublevels
of one of the two alkali hyperfine ground states in Cs
atoms. The calculated spectrum using such a simplified
model is in a qualitative agreement with the experimental
results reported in the literature [9,10] and it is clearly seen
that at high laser modulation index additional side CPT-
resonances are present. Their frequency positions matches
the experimental ones and it can be seen that CPT reso-
nance appear whennΩ (wheren is an integer number)
equals the Zeeman splitting of two sublevelsω12.
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Figure 9 a) Excited state population of theΛ-system versus time
since the excitation of the system andω12 at the fixed modula-
tion frequencyΩ = 2 for the modulation indexM = 4. Other
parameters were chosen as follows:Ω13 = Ω23 = 0.8, Γ = 1.
b) Excited state population of theΛ-system versusω12 for the
parameters of (a) computed with the help of density matrix ap-
proach (solid line) and quantum trajectories techniques (dashed
line). The number of computed trajectories is equal to 1000

Our future work will be concentrated on elaboration
of more complex model, where a larger number of exper-
imental parameters will be considered. Moreover, we plan
to extend the model by considering a richer level struc-
ture, which is well reasonable using the method of quan-
tum trajectories analysis, whose computing time increases
linearly with the numberN of the considered levels, in
contrast with the quadratic dependency shown by the den-
sity matrix approach.
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