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INTRODUCTION

Significant progress in quantum physics in the last
decade has essentially influenced the evaluation of the
role and qualitative content of quantum physics,
though, certainly, its fundamentals have been pre-
served. In the earlier studies of specific nonclassical
features of quantum systems, an experimenter only had
to ensure suitable macroscopic conditions (via choos-
ing an object, using macroscopic fields, providing for
necessary temperature, etc.). But today, it has become
possible to intentionally vary directly quantum states of
elementary quantum systems. This possibility initiated
a number of novel applied sciences and technologies,
such as quantum cryptography, quantum communica-
tions, and quantum calculation physics [1–4], which
exploit nonclassical features of quantum system states.
A comprehensive analysis of quantum specific features
characterizing physical systems (these features are
involved in the above applications) can be found in the
latest reviews [5–10] and monographs [11–14]. Despite
the variety of physical mechanisms used for generation,
processing, and transmission of quantum information,
all of them are principally based on the only essential
difference between quantum and classical events. This
is noncommutativity of quantum variables of systems
under consideration, which is equivalent to the nonor-
thogonality of their quantum states. Because of this cir-
cumstance, it is impossible to consider an arbitrary set
of quantum events within the framework of classical
logic, which is the result of the so-called incompatibil-
ity of nonorthogonal states.

Indeed, suppose two quantum states 

 

|α〉

 

 and 

 

|β〉

 

 are
orthogonal. Then, using them as an algebraic basis for
an algebra with addition in the form of linear subspace
union (sp) and product in the form of intersection, we
find that the algebra of quantum events constructed on

 

|α〉

 

 and 

 

|β〉

 

 contains only four subspaces {

 

∅
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) and 2D Hilbert (
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 = sp(
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) spaces. It is equivalent to the algebra of four ele-

ments 
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}, 

 

�

 

 =

 

 

 

α ∪ β

 

 constructed as an
aggregate of subsets contained in the set of two point
elements 

 

α

 

 and 

 

β

 

 (the indices of quantum states under
consideration) with addition of subsets in the form of
their sum and product in the form of their intersection.
This algebra, considered as an elementary example,
corresponds to the classical (bivalent, i.e., Aristotelian
[15]) logic underlying classical physics, where the rule
of the excluded third holds: either 

 

a

 

 or not 

 

–

 

a

 

. In the
above example, this rule is expressed as

 

α ∪ β

 

 = 

 

�

 

in terms of indices and as

 

sp(

 

|α〉

 

, 

 

|β〉

 

) = 

 

H

 

in terms of states. Here, 

 

|β〉

 

 has the sense of negation of
event 

 

|α〉

 

 and 

 

H

 

 has the sense of a known certain event.
Note that both elementary events 

 

|α〉

 

 and 

 

|β〉

 

 belong to
this class of events. If two states are nonorthogonal, in
the relationship 

 

sp(

 

|α〉

 

,

 

 state 

 

|β〉

 

) = 

 

H

 

 is not negation of

 

|α〉

 

 because it includes a nonzero projection on 

 

|α〉

 

along with the infinite set of other states 

 

|γ〉

 

 existing due
to the superposition principle. In this case, 

 

|α〉

 

 and 

 

|β〉

 

are, respectively, eigenvectors of two noncommuting

operators  and  of certain physical quantities. These
quantities cannot be measured simultaneously since
their quantum eigenstates are nonorthogonal. When the
above physical quantities take their possible values, the
corresponding sets of quantum states are incompatible
because they cannot be considered simultaneously
within the framework of classical logic.

Below, we present an elementary analysis which
reveals a close relationship between physical quantities
and their corresponding quantum states. Determination
of the relationships directly between coupling states
and the quantitative measurement of information car-
ried by these states is the subject of the information the-
ory. The purpose of this study is to analyze the choice
of an adequate quantitative measure of quantum infor-
mation and its possible role in physics. To this end, we
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investigate a number of basic physical models of quan-
tum systems and schemes of physical experiments in
the presence or absence of incompatibility of quantum
states, which is their only fundamental specific feature
causing various quantum effects. In Section 1, the main
types of quantum information and corresponding quan-
tum measures are classified using this criterion. In Sec-
tions 2 and 3, we successively consider coherent and
compatible information. The latter type of quantum
information is closely related to quantifying informa-
tion efficiency of a given experimental scheme. This
problem is discussed in Section 4.

1. INCOMPATIBILITY OF QUANTUM EVENTS 
AS THE BASIS OF NONCLASSICAL 
SPECIFICITY AND CLASSIFICATION

OF QUANTUM INFORMATION

The notion of quantum information formulated
simultaneously with the basic laws of quantum physics
is directly related to them and plays a key role in their
interpretation. Any quantum effect (for example, the
essentially microscopic process of the atom spontane-
ous radiation or a macroscopic transition to the super-
conducting state) can explicitly be related with the pro-
cesses of quantum information transformation if this
information is adequately associated with the corre-
sponding ensembles of quantum states. One can also
state that a prototype of quantum information had
appeared before the classical Shannon information the-
ory was developed. It suffices to recall the Born inter-
pretation of the physical sense of the wave function or
to analyze the information content of the quantum mea-
surement postulate (the wave function collapse) [16].

The notion of quantum information was admitted to
be important long ago. However, interest in its applica-
tion has only recently been stimulated by the develop-
ment of modern quantum optics experimental methods
ensuring quantum system control. Progress in this area
of quantum physics enables one to employ quantum
information not only as a useful abstract notion but,
also, to manipulate it in actual experiments in a free
manner. Studies of quantum information processing
initiated quantum information physics. This new field
of physics is covered in the literature referred to in the
bibliography index [17].

Proceeding from the conventional description of
quantum mechanics [16, 18–20], one can suppose that
proper physics must deal only with quantum-physical
quantities, whereas quantum states could rather be
studied, irrespective of specific physical variables,
within the framework of mathematics, one of whose
fields is sometimes qualified as the classical informa-
tion theory. However, a more comprehensive analysis
shows that this is not true: as soon as quantum states are
associated with eigenstates of physical variables char-
acterizing an actual quantum model, they become car-
riers of physically meaningful information. For exam-
ple, let us consider the mathematical structure of self-

adjoint operators  in Hilbert space 

 

H

 

, which are used
in quantum-mechanical representations of physical
variables. Then, the spectral decomposition of operator

 

 =

 

  describes its splitting into mathemati-
cal objects of two types: the set of physically possible
values 

 

λ

 

n

 

 and the set of corresponding quantum states

 

|

 

n

 

〉

 

. The latter objects contain the most general physical
information which is independent of specific values 

 

λ

 

n

 

and characterizes only certain physical events. Each of
these events lies in the fact that a physical quantity
takes one of the values 

 

λ

 

n

 

.

Information relationships between quantum states
are determined by the dynamic properties of a physical
system and, evidently, provide for the most fundamen-
tal description of its dynamic characteristics. These
relationships may characterize the intrinsic dynamics
of a quantum system and its interaction with other sys-
tems. Initially, they are represented as equations for
wave functions or quantum state operators. The theoret-
ical information approach is based on introducing an
adequate quantitative measure of information
exchange. In the general case, being independent of
specific physical variables, this measure is superior to
them in the analysis of general dynamic properties of a
quantum system.

If a specific scheme of a physical experiment is not
discussed, a quantum system is described using its
information characteristics which yield quantitative
relationships between the quantum states of a given
system and the quantum states of other systems that
may interact with it. For example, the main information
content of a two-level atom radiation is reduced to the
fact that the quantum information carried by this atom
is transferred to the corresponding quantum of the pho-
ton field. In this situation, the quantum receives infor-
mation on the phase of the initial atom state, i.e., the
information exchange is essentially quantum and
retains coherence of the transformed wave functions
(see Section 2). Thus, the information description is
more comprehensive than in the case when it is repre-
sented in terms of the atom–field energy exchange.

The fundamental concept of classical information
measure is formulated in the Shannon information the-
ory [21, 22]. For classical systems of physical events, a
unified quantitative measure of information can be
introduced, which is independent of neither the specific
physical content of this information nor its usage. This
measure enables one to express the asymptotic level of
error-free transmitted information content as the opti-
mized Shannon information content, which is neces-
sary for combining numerous channels in the presence
of noise.

This elegant theory is based on a special property of
classical ensembles that is excluded from the original
principles of quantum physics. This property is repro-
ducibility of classical events: statistically, it makes no
difference whether one and the same physical system or

Â
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its information-equivalent copy is at the input and out-
put. However, the latter situation is impossible in the
quantum world. Obviously, this circumstance initiated
the discussion of the question whether the Shannon
information measure could be applied to quantum sys-
tems [23–25].

In this paper, it is shown that the traditional defini-
tion of the Shannon entropy and the corresponding
information measure can successfully be used for ana-
lyzing quantum systems also in the case when funda-
mental differences between ensembles of classical and
quantum events are properly taken into account.

The quantum theory involves the principle of quan-
tum state superposition implying the existence of an
arbitrary linear combination 

 

c

 

1

 

|α〉

 

 + 

 

c

 

2

 

|β〉

 

 of states 

 

|α〉

 

and 

 

|β〉

 

, which results in the presence of a continuum set
in any quantum system. This set is Hilbert space 

 

H

 

 

 

�

 

 

 

ψ

 

of states, most of which do not coincide with any
orthogonal basis states 

 

|

 

n

 

〉

 

 associated with a certain

physical quantity described by the operator 

 

 =

 

. When a quantum system is transformed,
the basis vectors and the entire Hilbert space are also
transformed. This circumstance, which is exploited in
algorithms of quantum calculations, significantly
enhances their efficiency due to high concurrency of
operations [3, 4, 13]. However, the above continuum set
does not contain an unlimited information content in
the conventional classical sense.

The point is that an arbitrary quantum state 

 

|α〉

 

 

 

∈ 

 

H

 

can be distinguished from another state 

 

|β〉

 

 

 

only when
the states are orthogonal. The probability of random
coincidence of two arbitrary states is determined by the
squared absolute value of the scalar product, so that the
2D probability density of two equiprobable states has
the form

 

(1)

 

where 

 

dV

 

α

 

 and 

 

dV

 

β

 

 are small volume elements on the
sphere of wave functions satisfying the normalization

 

 = 

 

 and 

 

D

 

 is the dimension of space 

 

H

 

.

Within the framework of the Shannon information the-
ory, one can find effective number 

 

N

 

α

 

 of states of 

 

α

 

 dis-
tinguishable by variable 

 

β

 

 and vice versa [26]. Proba-
bility distribution (1) describes the information
exchange between two information variables 

 

α

 

 and 

 

β

 

,
which, according to the Shannon theory, is character-
ized by effective number 

 

N

 

α

 

 of error-free transmitted
messages that are formed of subsets 

 

A

 

α

 

 of indices cor-
responding to quantum states 

 

α

 

. This effective number
(calculated per symbol) is attained for infinitely long
sequences of independently transmitted unit symbols.
When each 

 

A

 

α

 

 is associated with appropriate states 

 

α

 

,
all of these states will be distinguished without error (in
the above sense), so that 

 

Nα is the number of distin-

Â

λn n| 〉 n〈 |∑

P dα dβ,( ) α β〈 | 〉 2dVαdVβ

D
--------------------,=

α| 〉 α〈 | Vαd∫ Î

guishable states. It is determined by the corresponding
Shannon information content

using the formula Nα = . For joint probability distri-
bution (1) (see [27]), Iαβ = 1 – 1/ln4 � 0.27865 bit for
D = 2 and Iαβ = (1 – C)/ln2 � 0.60995 bit (C is the Euler
constant) for D  ∞. Thus, at any space dimension D,
Nα < 2, i.e., quantum uncertainty reduces the effective
number of distinguishable states even below a value of
two corresponding to one bit. This is caused by high
quantum uncertainty in pure states ψ, which, on the one
hand, are analogs of deterministic classical states when
only their orthogonal sets are considered and, on the
other hand, contain internal quantum uncertainty. In the
latter case, other nonorthogonal states may exist and
pure states P(x) = |ψ(x)|2 determine the corresponding
probability distributions P(x) for variables  such that
ψ is not their eigenfunction. Particularly, the correspond-
ing entropy of the N-partite state ΨN = ψ ⊗ … ⊗ ψ
asymptotically approaches  at N  ∞, i.e.,
the pure character of the state virtually does not influ-
ence the uncertainty of all of the quantum states. The

mixed state  ⊗ … ⊗  exhibits the maximum
uncertainty equal to  bit.

Thus, the first specific feature of quantum informa-
tion due to incompatibility of quantum states is the
impossibility of extracting a noticeable information
content with spaces of large dimension D without
selecting states. Quantum information always must be
selected in transmission channels transforming a con-
siderable information content in a distinguishable form.

Let us consider a simple example illustrating the
qualitative characteristics of quantum systems due to
incompatibility of all quantum states. Suppose two
two-level atoms are in one and the same state (Fig. 1a).
While the operational sense of the expression in one
and the same state is quite clear, its qualitative sense
essentially does not coincide with that of this expres-
sion in the classical case. When this example is consid-
ered from the classical standpoint, only two basis states
(k = 1, 2) of each atom are taken into account. Then,
when describing the statistic of these atom states, it
makes no difference whether they are assumed to cor-
respond to different atoms or to one and the same atom.
The point is that, in a combined system, only one state
has a nonzero probability and the knowledge of state k
of each atom corresponds to the exact knowledge of a
possible state of the other atom. Thus, when only pop-
ulations are considered in the classical case, atoms can
be equivalent copies of each other.

In the quantum case, it is impossible to copy all
quantum states in a similar manner. In addition to the
above two states in an atom, there exist other states |α〉

Iαβ
P αd βd,( )

P αd( )P βd( )
-------------------------------P αd βd,( )2log∫=

2
Iαβ

x̂

N D2log

Î Î/DN

N D2log
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with nonzero probabilities |〈α|k〉|2 such that |k〉  is not the
proper basis for averaged physical quantities. This cir-
cumstance is due to quantum uncertainty, which is
always present in an ensemble of quantum states
(Fig. 1b). It is well known that, for a harmonic oscilla-
tor, this uncertainty manifests itself in nonzero energy
of vacuum fluctuations �ω/2. For two-level atoms, it

takes the form of nonzero values  =  = , where

Pauli matrices  have the sense of quadrature cosine
and sine components of atom oscillators. In spite of the
fact that these atoms are in one and the same state, their
corresponding eigenstates are different because the
above state refers to different physical systems. Each of
these systems contains its own ensemble of mutually
incompatible quantum states, which are described by
nonorthogonal eigenvectors corresponding to different
noncommuting operators of physical variables as

shown in Fig. 1b. Indeed, mean-square residuals (  –

)2 and (  – )2 are nonzero because their opera-
tors do not commute with the operator of difference of
populations  which corresponds to strictly nonzero

difference  – . This means that the eigenstates of
these quantum variables for the atoms under consider-
ation do not coincide, i.e., all of their mutually corre-
sponding quantum states are by no means copies of
each other.

This simple example implies the important general
conclusion that, in the presence of incompatibility, i.e.,
nonorthogonality in ensembles of quantum states of
two different atoms, these ensembles are always differ-
ent. Hence, information on the states of a quantum sys-
tem at a certain instant which is obtained by means of
any other system considered at the same instant is never
complete. Complete quantum information on all quan-
tum states of a system at a specified instant can be pro-
vided only by this system itself. The complete informa-

σ̂x
2 σ̂y

2 Î

σ̂x y,

σ̂x
A

σ̂x
B σ̂y

A σ̂y
B

σ̂z

σ̂z
A σ̂z

B

tion content can appear in another place (or at another
instant) when it is automatically canceled at the initial
position, which occurs, for example, during teleporta-
tion [2]. Quantum information can be teleported only to
a single receiver, which provides for the possibility of
designing absolutely intercept-secure communication
systems based on quantum cryptography.

The above qualitative concept of uniqueness of
quantum information can be justified quantitatively. Let
us consider the squared difference of projectors on the
mutually corresponding wave functions of two atoms
considered at one and the same instant. Integrating the
operator of this squared difference over all possible
wave functions, we obtain the expression yielding a
strictly positive value:

(2)

where integration is performed over the Bloch sphere
including states |α〉 with index α = (ϕ, ϑ), dVα =
sinϑdϑdϕ/(2π) is a small volume element, and Vα =
D = 2 is the total volume of integration. This expression
is similar to the corresponding classical formula for the
rms discrepancy

between classical indicators  and  of events
ξA = ξ and ξB = ξ related with random variables ξA and
ξB. For any joint probability distribution P(ξA, ξB) =
P(ξA)  that describes random variables coinciding
everywhere, the mean of random function ε is zero, i.e.,
for these probability distributions, all of the events ξA =
ξ and ξB = ξ are realized simultaneously and the above
quantities are copies of each other. Being an exact
quantum analog of the discrepancy between two
ensembles of classical events, bipartite operator (2) has
two proper subspaces which are formed of singlet and
triplet Bell states ||k〉〉  and correspond to the eigenvalues
εk = 1, 1/3 of the mean-square residual. The value cor-
responding to the singlet state is three times greater
than the value corresponding to the triply degenerate
triplet state. Strict positivity of this operator, i.e., the
absence of the zero eigenvalue, means that, for any joint
density matrix, its averaging yields a nonzero result,
which determines the rms discrepancy of all quantum
states. Hence, it is impossible to mutually copy all
quantum states of various systems irrespective of their
states.

The foregoing implies that the key difference
between the classical and quantum types of information
depends on whether the states associated with the infor-
mation of interest are compatible or incompatible. The

ε̂ α| 〉 α〈 | ÎB ÎA α| 〉 α〈 |⊗–⊗( )2 Vαd
D

---------∫=

=  0| 〉| 〉 0〈 |〈 | 1
3
--- k| 〉| 〉 k〈 |〈 |

k 1=

3

∑+  � 
1
3
---,

ε δξAξ δξBξ–( )2

ξ
∑=

δξ Aξ δξAξ

δξ AξB

(a)

Atom A Atom B

Basis
states

equi-
valent

nonequi-
valent

Basis
states

All
states

All
states

(b)

σ̂z|2〉

|1〉

σ̂x

Fig. 1. Incompatibility of nonorthogonal quantum states.
(a) Equivalence of compatible ensembles of basis states and
nonequivalence of complete quantum state ensembles for
two two-level atoms. (b) Vacuum fluctuations caused by
incompatibility.
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states of different systems considered at one and the
same instant are always compatible. Hence, in the pres-
ence of internally incompatible states, they cannot copy
each other, and the total ensembles of quantum states of
one and the same system which are considered at two
different instants are most often incompatible and,
moreover, can copy each other in the absence of noise
retaining the uniqueness of their quantum fluctuations
at every instant. However, the states of two different
systems observed at different instants may be compati-
ble or incompatible depending on the transformation
which couples these two instants. This factor is rather
important for the basic definitions of quantitative quan-
tum information measures (see Sections 2 and 3).

Thus, according to the most fundamental classifica-
tion of quantum information, which involves the com-
patibility/incompatibility property of state ensembles
under consideration, the following four types of infor-
mation can be recognized: classical information, semi-
classical information, coherent information, and com-
patible information.

In the case of classical information, all states are
compatible and, within the original form of the Shan-
non information theory, are considered as classical on
default [21, 22]. However, classical information can
always be transmitted via a quantum channel and is of
interest to quantum physicists as well. A classical chan-
nel is specified by conditional probability distribution
p(y|x) of states of output y at fixed states of input x.

For semiclassical information, all input information
is specified by classical states λ and output states are
characterized by internal quantum incompatibility as
quantum states in Hilbert space H. Nevertheless, output
states are automatically compatible with input states. In
the general case, a quantum channel is described by an
ensemble of mixed quantum states  depending on
classical parameter λ [28, 29]. Variables λ are equiva-
lent to input variables x, the set of all wave functions
ψ ∈ H is equivalent to output states y, and the density
matrix of  is equivalent to conditional probability
distribution p(y|x) of a classical channel.

In the case of coherent information, the spaces of
input and output states are characterized by internal
quantum incompatibility. Being related by channel
superoperator �, which transforms the input density
matrix to the output density matrix,  = �  [30, 31],
these spaces are mutually incompatible. Transforma-
tion � determines the flow of quantum incompatible
states transmitted from the channel input to output and
is a completely quantum analog of classical conditional
distribution p(y|x), which, in a similar manner, linearly
transforms classical input probability distribution p(x)
to output distribution p(y).

In the case of compatible information, the input and
output contain internally incompatible states but are
mutually compatible.

ρ̂λ

ρ̂λ

ρ̂B ρ̂A

While the first three types of information and the
coherent information measure (which was introduced
not long ago) are well known [22, 28, 30], compatible
information has been introduced in an explicit form most
recently as a special type of information measure [32]. It
is determined for a combined bipartite system with the
compatible input and output characterized by internal
quantum incompatibility.

Coherent and compatible types of information com-
prise all possible qualitatively different types of infor-
mation in completely quantum channels. Our study of
possibilities provided by applying the information
approach to actual experiments shows that only com-
patible information is an adequate tool for analyzing
the information efficiency of an abstract scheme of a
quantum-physical experiment.

2. COHERENT INFORMATION

A. The Physical Sense of Coherent Information 

According to the classification presented in Sec-
tion 1, one possible quantitative information measure
for a completely quantum channel is coherent informa-
tion introduced by Schumacher and Lloyd [30, 31]. It
serves as a quantitative measure of incompatible infor-
mation content that is transmitted from one state space
to another. One can consider both the case of one and
the same state space and the case of physically different
spaces. A trivial case of coherent information exchange
is the dynamic evolution of a closed system described
by unitary operator U:  = U U–1. Here, all pure

states ψ admissible by initial density matrix  are
transmitted unchanged and transmitted coherent infor-
mation content Ic coincides with the initial information
content. By definition, the latter is measured with the
Von Neumann entropy S[ ] = S[ ], i.e., the corre-
sponding information is described by the expression

(3)

However, this definition requires additional reasoning
in terms of the operational sense of the density matrix.
In the self-consistent theory, this matrix is only a result
of averaging the pure state of a combined system over
auxiliary variables. Then, expression (3) must be con-
sidered as the entanglement of input system A and ref-
erence system R for properly chosen pure state ΨAR

(such that TrR|ΨAR〉〈Ψ AR| = ) of combined system
A + R. Thus, coherent information is measured in terms
of mutually compatible states of two different systems
A and R. At the same time, information is transferred
from input A to output B, the latter differing from A by
a unitary transformation only.

Information channel � with corresponding noisy
environment E (Fig. 2a) must be included in the infor-
mation system, which completes the description of its
general structure [33].

ρ̂B ρ̂A

ρ̂A

ρ̂B ρ̂A

Ic Trρ̂A ρ̂A.log–=

ρ̂A
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Coherent information for a channel of the general
type is defined as follows [33]:

(4)

which is in agreement with the Shannon definition of
classical information [34]. Here, � is the unit superop-
erator which is applied to the variables of the reference
system leaving them unchanged. The second term in
this expression describes the exchange entropy, which
is nonzero only due to the interaction between sub-
systems A + R and E when � ≠ �. Superoperator �
transforms, according to the relationships

(5)

the states of input A into the states of output B, whose
quantum states are compatible with the states of refer-
ence system R as before because these systems are not
entangled due to the above transformation. This enables
one to consider B and R as kinematically independent
systems described by joint density matrix . Taking
into account the above circumstance and the zero, by
supposition, entropy of combined system R + B + E,
relationship (4) can be considered as the measure of
entanglement between output B and combined system
R + E decreased by the entropy of exchange between
the channel A  B and noisy environment E. Thus, it
follows from (4) that, in terms of physical content,
coherent information is a specific measure of preserved
entanglement between compatible systems R and A
(remaining after information is transmitted through the
channel A  B) rather than that it directly serves as a
measure of quantum incompatible state flow transmit-
ted from A to B. In the general case, output B may be
physically different from A and even may be described
by a Hilbert space of quite different dimension (HB ≠
HA) [35, 36], which is illustrated by the physical exam-
ple of the information system presented in Fig. 2b.

For this system, input A and reference system R cor-
respond to the ground two-level states of two entangled
atom Λ systems. Information channel � is provided by
laser excitation of input system A at the radiation-active
upper level. Combined with the vacuum state, two
emitted photons correspond to output B, whereas all of

Ic S ρ̂B[ ] S � �⊗( ) ΨAR| 〉 ΨAR〈 |[ ] ,–=

ρ̂B = �ρ̂A = TrRρ̂BR, ρ̂BR = � �⊗( ) ΨAR| 〉 ΨAR〈 |

ρ̂BR

the remaining freedom degrees of the field combined
with the excited atom state form noisy environment E.

The elementary carrier of quantum information is a
two-level system, an analog of the classical bit which is
conventionally called a qubit.1 Therefore, it is logical to
call the quantitative measure of specifically quantum
coherent information a qubit too. Obviously, this unit of
coherent information corresponds to the use of a binary
logarithm in definition (3), which yields Ic = 1 qubit for

a two-level system with density matrix /2 characteriz-
ing the state with the maximum possible quantum
entropy. With this state, all possible quantum states are
presented equally and most completely.

Now, let us find out how the quantitative measure of
quantum information can be used in physics. The quan-
tum theory usually is applied to calculations of certain

means of the form  = , where λn and
|n〉  are, respectively, eigenvalues and eigenvectors of

operator . This decomposition is the result of averag-
ing physical quantities represented in terms of proba-

bilities  = 〈|n〉〈 n|〉 of quantum states |n〉 . All possible
variables constitute an infinite set that is much richer
than the set of all quantum states. Therefore, irrespec-
tive of physical values, relationships between physical
states provide for more general information on physical
couplings in a more compact form. The characteristic
features of the coherent information exchange corre-
spond to physical relationships expressed in the most
general form because they are associated with the most
general properties of interaction between two quantum
systems chosen as an input and output and related by a
one-to-one transformation of all possible mixed input
states. Actually, the dependence of coherent informa-
tion on the parameters of an information system is of
even more fundamental character than relationships
between specific physical quantities. This dependence
is calculated for a number of fundamental models
widely applied in quantum physics [34–36].

As an example, let us consider the well-known
Dicke problem [37], where the information exchange
between atoms demonstrates the dynamics of the same
oscillation type [35] as the energy exchange via emitted
photons, which determines radiation damping in a sys-
tem of two two-level atoms. In this case, the oscillation
dynamics is typical of not only energy but also the set
of other variables. Hence, in order to describe the gen-
eral properties of interatomic interaction, it is expedient
to consider coherent information as a measure of pre-
served entanglement rather than the set of various phys-
ical variables. The former is a characteristic of the inter-
nal quantum incompatibility exchange between mutu-
ally compatible state sets of the reference and input
systems HR and HA. In the Dicke problem, information
exhibits its coherent character in the time dependence

1 The term qubit was first introduced by B. Schumacher [51].

Î

Â〈 〉 λn n| 〉 n〈 |〈 〉∑
Â

Pn
A

E

A

R

ψE

ψARE

ψAR

R A B

E

(a) (b)

B�

Fig. 2. (a) Block diagram of a quantum information system
and (b) its possible physical realization: (A) input, (B) out-
put, (R) reference system, and (�) channel with noisy envi-
ronment E.



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS      Vol. 47      No. 9       2002

MEASUREMENT AND PHYSICAL CONTENT OF QUANTUM INFORMATION 939

at a large difference between decay rates of the short-
and long-lived Dicke states. The interatomic exchange
coherence is realized by coherent oscillations between
both of these components. Therefore, the lifetime of
coherent information is determined by the short-lived
component in contrast to, for example, the lifetime of
the atom population determined by the long-lived state.

Unlike the other types of quantum information,
coherent information enables one to distinguish two
qualitatively different information exchange classes
corresponding to the cases when classical information
or quantum state entanglement is used. Only in the lat-
ter case, coherent information is nonzero. Therefore, it
is just coherent information which can be adequately
used for finding out to what extent a quantum informa-
tion transmission channel retains the capability of uti-
lizing the output as an input equivalent for realizing sit-
uations where the quantum character of an input signal
is of essential importance. These problems are widely
covered in the modern literature (see [13] and refer-
ences cited therein). Being a measure of the entangle-
ment of a quantum system that is preserved by a physi-
cal transformation, coherent information is now of cer-
tain practical interest for quantum information
transmission and processing as well as for the analysis
of specific physical models of quantum channels illus-
trated below by an example.

B. One-Time Coherent Information 

Proceeding from formal mathematical analogues,
we can start describing a two-sided quantum informa-
tion channel with the formal quantum generalization of
the Shannon classical mutual information I = SA + SB –
SAB:

(6)

This generalization makes sense only when joint den-
sity matrix  is specified. This matrix is considered
as a direct analog of classical joint probability distribu-
tion PAB [38].

Obviously, formula (6) can be applied to quantum
systems if we assume that the states of systems A and B
are mutually compatible. It is a fortiori true for one-
time states of the corresponding physical systems when
they are not overlapped by the parts of one and the same
quantum system containing both an input and output.2

The foregoing justifies the term one-time as referred to
information that is specified using the joint density
matrix as an initial characteristic. Though one can for-
mally define quantum information I with expression (6),
its physical sense remains to be seen [40, 41]. This can

2 A similar generalized meaning of coherent information and its
calculation for specific systems are also possible [35]. When sys-
tems move at relativistic velocities, the appropriate relativistic
corrections are necessary. These situations are topical in modern
experiments with entangled quantum states [39] where effects
associated with motion of a measuring system are recorded.

I S ρ̂A[ ] S ρ̂B[ ] S ρ̂AB[ ] .–+=

ρ̂AB

be attributed to the main qualitative difference between
the classical and quantum information channels. In
general, relationship (5) implies that the quantum input
and output are incompatible as, for example, in the case
when the states of one and the same quantum system
are considered at two different instants. Thus, A and B
in (6) cannot be the input and output that are involved
in the definition of coherent information. Therefore, in
the quantum case, in order to apply density matrix ,
one has to physically specify systems A and B. This can
be done using the Schumacher definition of coherent
information, which inevitably necessitates modifying
expression (6).

Adequate physical interpretations of systems A and
B are provided by identifying them, respectively, with
the reference system and with the output of a certain
quantum channel associated with specified joint density
matrix  as shown in Fig. 3. In this case, they are
automatically compatible. Therefore, the actual input
of the above channel corresponds to a certain state of
input B0 at an initial instant rather than to system A. At
the initial instant, we have information on A which is
not distorted by the channel and is transformed by �
into the final state of output B. In this case, B0 and chan-
nel � manifest themselves in the form of density matrix

 coupling the output and reference system rather
than being explicitly introduced. Specified density
matrix  properly corresponds to its analog, i.e.,

density matrix  in (5) (which is involved in the
Schumacher method), when the structure consisting of
the reference system and input is characterized by a
pure state described by function  such that the
relationship

(7)

holds for a certain channel �. Then, the density matrix

ρ̂AB

ρ̂AB

ρ̂AB

ρ̂AB

ρ̂BR

ΨAB0

ρ̂AB � �⊗( ) ΨAB0
| 〉 ΨAB0

〈 |=

ρ̂A TrB0
ΨAB0
| 〉 ΨAB0

〈 |=

A

B

A

BB0 �

Ic

ψAB0ρ̂AB

(a) (b)

Fig. 3. Reconstruction of a quantum information system
corresponding to given joint density matrix : (a) math-

ematical description of the channel specifying one-time
information and (b) its correspondence with the Schuma-
cher construction [33].

ρ̂AB
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of the reference system can automatically be repre-
sented as the corresponding partite density matrix
TrB  of the system A + B if one takes into account
that the trace with respect to B0 in (7) is � invariant
because this transformation does not affect subsystem A.

The foregoing implies that the corresponding one-
time coherent information can be defined as the Schu-
macher coherent information

(8)

which, unlike information measure (6), does not con-
tain the term S[ ]. As follows from the above descrip-
tion, in the general case, the term one-time does not
directly mean that it refers to the coupling between the
system states at one and the same instant. Actually, ref-
erence system A and output B may be considered at dif-
ferent instants, and the only important condition is their
compatibility. Thus, one-time information couples two
compatible systems all of whose variables are mutually
compatible, i.e., described by commuting operators, in
contrast to coherent information, which, in the general
case, couples the incompatible input and output.

Representing coherent information in another form,
one-time information (8) (in contrast to information (6))
is not symmetrical with respect to A and B. Moreover,
coherent information may be negative. The latter cir-
cumstance is evident for density matrices  corre-
sponding to a purely classical exchange between basis
sets of orthogonal states:  = . Then,

all entropies are reduced to classical ones: S[ ] =

SAB = , S[ ] = SB = , and
SAB > SB. A negative value of coherent information
means that the exchange entropy is so large that it not
only makes the preserved information content vanish
but also exceeds the corresponding critical value. In the
latter case, one can assume that Ic = 0.

C. The Rate of Coherent Information Exchange
in Λ Systems 

The information system presented in Fig. 2b plays a
special role in modern applications based on nonclassi-
cal features of quantum information, such as quantum
cryptography and quantum computations. Atomic Λ
systems can be used as basic blocks in these applica-
tions. They are promising carriers of elementary quan-
tum information units (qubits) that enable one to effi-
ciently store quantum information and freely manipu-
late it by means of laser radiation [10, 13]. For the
information system presented in Fig. 2b, the use of the
second Λ system as a reference system is physically
justified because the entanglement of two correspond-
ing qubits has a clear physical meaning as initially
stored quantum information. Particularly, the latter can
be applied for performing basic logical operations in
quantum computations involving an output system. The

ρ̂AB

Ic S ρ̂B[ ] S ρ̂AB[ ] ,–=

ρ̂A

ρ̂AB

ρ̂AB Pij i| 〉 j〈 | j| 〉 i〈 |∑
ρ̂AB

Pij Pijlog∑– ρ̂B P j P jlog∑–

radiation quantum information transmission channel is
of interest because, having converted an initial qubit
into the photon field, one can exploit various possibili-
ties provided by further high-speed transformations. It
is of interest to find out how rapidly information can be
reconstructed after the qubit–photon field channel is
used once.

The reader can find detailed computations of coher-
ent information for this channel in [36]. Figure 4a
shows the dependence of coherent information on time
and the laser field action angle for a symmetrical Λ sys-
tem. These results are obtained for the input qubit in the

form of the state with the maximum entropy  = /2.
This qubit state corresponds to the coherent informa-
tion content that is independent of individual intensities
of two resonant laser fields affecting the Λ system.

One can immediately see from Fig. 4a that there
exists the optimum information exchange level R = Ic/t
(where t = τc) when the information channel is used
periodically at duration τc of the exchange cycle, so that
the initial state is instantly renewed after each cycle.
Figure 4b demonstrates exchange rate R calculated for
a symmetrical Λ system with the rates of radiative
decay γ1 = γ2 = γ.3 The maximum value reached by R is
R0 = 0.178γ. Thus, the atom–photon field information
exchange limits the rate of using coherent information
stored in Λ systems, i.e., the capacity of the Λ system–
photon field coherent information channel. The order of
magnitude of this rate is determined by the rate of radi-
ative decay of an excited state, whereas its specific
value depends on decay rates γ1, 2 of both radiative tran-
sitions of the Λ system. In the limit of a two-level radi-
ation system, when γ1 = 0 or γ2 = 0, the optimum rate is
equal to 0.316γ.

3. COMPATIBLE INFORMATION

For one-time mean values of quantum physical
quantities, the internal quantum incompatibility mani-
fests itself just as statistical uncertainty, which can be
taken into account using the equivalent classical proba-
bility distribution. With the probabilistic measure

(9)

on the set of all quantum states, the mean value of any

operator  =  can be represented as  =

dP/dVα(αn), where |αn〉  = |n〉 . Here, dVα is a small
volume element in the space of physically different

states of a D-dimensional Hilbert space HA (  =

D), which is represented by the Bloch sphere in the

3 D. Bochkarev, private communication (2001).

ρ̂A Î

P dα( ) α〈 |ρ̂A α| 〉dVα=

Â λn n| 〉 n〈 |∑ Â〈 〉

λn∑
Vαd∫
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case of qubit, i.e, when D = 2 (see Section 1). Rela-
tionship (9) is the mean of the operator measure

(10)

which is a special case of a nonorthogonal decomposi-
tion of unit [42], or a positive operator-valued measure
(POVM) [2, 14].

Generalized quantum measurement procedures are
described by POVMs. Unlike a direct measurement in
the original system represented by the orthogonal
decomposition of the unit, i.e., by the orthoprojective
measure in HA, a generalized quantum measurement is
performed in the compound space HA ⊗ Ha with the
appropriate complementary state space Ha and joint
density matrix  ⊗ , which contains no other infor-
mation on A in addition to that contained in density
matrix .

System A is characterized by uncertainty having the
form of quantum incompatibility of the set comprising
all of its quantum states. Generalized quantum mea-
surement (10) transforms this uncertainty into classical
statistical uncertainty of the quantitatively equivalent
set of compatible events in the system A + a. With this
representation, the coherent relationships typical of the
original quantum system are transformed into the cor-
responding classical correlations, which have no quan-
tum specificity. Therefore, this measurement yields a
result that is not equivalent to the original system and
cannot provide for further quantum transformations.
This circumstance is the inevitable pay for information
represented in the classical form allowing its free use.
Nevertheless, initial quantum correlations are taken
into account in the statistic of resultant classical states.

Let us assume that two Hilbert spaces HA and HB of
corresponding quantum systems A and B are given and
joint density matrix  is specified in HA ⊗ HB. In par-
ticular, A and B may correspond to the subsystems of
the compound system A + B specified at one and the
same instant t and can be considered as the input and
output of an abstract quantum channel in an actual
physical system. The determining property of systems
A and B is their compatibility. Hence, the joint measure-

ment represented by two POVMs as  ⊗  intro-
duces no new correlations between the input and output
and can be interpreted as an indicator of information
input–output relationships. The corresponding joint
probability distribution is

(11)

Then, the Shannon information I = S[P(dα)] +
S[P(dβ)] – S[P(dα, dβ)] determines the compatible
information content [32, 43].

The physical sense of compatible information
depends on a specific measurement procedure and
characterizes the output quantum information. This
information can be obtained via two POVMs, which (in

Ê dα( ) α| 〉 α〈 |dVα ,=

ρ̂A ρ̂a

ρ̂A

ρ̂AB

ÊA ÊB

P dα dβ,( ) Tr ÊA dα( ) ÊB dβ( )⊗[ ]ρ̂ AB.=

the form of classical carriers α and β) select informa-
tion on the quantum state of the input, which is trans-
mitted to the output. As in the case of one-time infor-
mation, the reference system of the Schumacher
scheme can serve as input A (see Figs. 2a and 3b). Then,
input–output joint density matrix  can be expressed
in terms of the input partial density matrix and channel
superoperator by formula (7).

Let us consider the special case when α and β index
all quantum states in HA and HB according to specific
POVMs in forms (10). In this case, compatible infor-
mation is distributed over all quantum states and asso-

ρ̂AB
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Fig. 4. (a) Coherent information Ic in a symmetrical Λ sys-
tem vs. dimensionless time γt and action angle θ = Ωτp for
the input state with the maximum entropy (γ is the radiation
decay rate, Ω is the effective Rabi frequency, and τp is the
exciting pulse duration) [35]. (b) Coherent information rate
R vs. cycle duration t and action angle θ.
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ciated with the total internal quantum uncertainty of
input states, which is automatically taken into account
in probability distribution (9). In particular, information
that is contained in quantum correlations observed in
the presence of quantum entanglement between A and
B is also involved in joint probability distribution (11).
In addition, here, compatible information is character-
ized by operational invariance [44], i.e., all noncom-
muting physical variables are equally taken into
account in this information measure. The above repre-
sentation of quantum information in terms of classical
probability distributions can be interpreted as a modi-
fied quantum-mechanical representation in terms of
classical physical variables applied in laser physics and
discussed by R.J. Glauber in his lectures [45, 46].

A. Nonselected Information 

It is natural to define information that corresponds to
a generalized measurement specified in form (10) and
comprises all quantum states of a system as nonselected
since all quantum states are equally presented in it and
quantum variables are not selected. The opposite situa-
tion occurs in the case of extremely selected informa-
tion when orthogonal POVMs are used, which is typi-
cal of elementary cryptographic information exchange
schemes [2]. For example, let us analyze nonselected
information depending on the type of joint density
matrix and its main parameter, which specifies the
entanglement degree, for pure and mixed states.

(i) A pure state is specified by the wave function

(12)

ρ̂AB
p( ) q( ) ψAB q( )| 〉 ψAB q( )〈 | ,=

ψAB q( )| 〉 1 q2

2
-----– 1| 〉 1| 〉 q

2
------- 2| 〉 2| 〉+=

with entanglement parameter q. For the limit values
q = 0 and 1, it yields a tensor product and completely
entangled state, respectively.

(ii) A mixed state is specified by the density matrix

(13)

where ψAB is determined in (12). For the limit values
q = 0 and 1, we obtain, respectively, a mixed state with
purely classical correlations and a pure complete entan-
gled state.

Computations of nonselected information are illus-
trated by Fig. 5. The maximum value Iu = 0.27865 is
attained for a completely entangled state and coincides
with the available information content [47] calculated
in [27]. In this context, the term availability is consid-
ered to mean the possibility of associating with the set
of all possible quantum states of information distin-
guishable against the quantum uncertainty background.

B. Selected Information 

Selected information corresponds to generalized

measurements with POVMs  and  where not all
of the quantum states are equally included. The results
presented below are calculated for selected information

in a two-qubit system obtained using measurements 

and  which combine two different types: nonse-

lected measurements (dα) and (dβ) and orthop-

rojective measurements  and U–1 U corresponding
to direct measurements of orthogonal quantum states.
Then,

(14)

Here, k, l = 1, 2;  = |k〉〈 k|; and U describes rotation of
the second qubit wave function. This rotation is speci-
fied by the transformation ϑ  depending on rotation
angle U(ϑ) = exp(i ϑ /2) in basis |k〉  which is proper

for POVM  of the first qubit. Discrete output mea-
surements (k, l) complete continual results α and β,
which corresponds to new variables with an extended
spectrum of values: a = α, k and b = β, l. In other words,
we measure variables with a combined value spectrum
containing a discrete component and a continuous com-
ponent. These variables comprise the continuum of all
wave functions and a singled-out orthogonal 2D basis.
The limit cases χ = 0 and 1 correspond to nonselected
and complete orthoprojective measurements, respec-

ρ̂AB
m( ) q( ) 1 q–( ) 1

2
--- 1| 〉 1| 〉 1〈 | 1〈 | 1

2
--- 2| 〉 2| 〉 2〈 | 2〈 |+ 

 =

+ q ψAB 1( )| 〉 ψAB 1( )〈 | ,

ÊA ÊB

ÊA

ÊB

Ê Ê

Êk Êl

ÊA α( ) 1 χ–( )ÊA dα( ), ÊA k( ) χ Êk,= =

ÊB β( ) 1 χ–( )ÊB dβ( ), ÊB l( ) χU 1– ÊlU .= =

Êk

σ̂2

Êk

0.1

0

0.2

Iu, bit
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Fig. 5. Nonselected information Iu vs. entanglement param-
eter q for (a) a pure entangled state formed of two mutually

orthogonal basis states with the weights q/  and

 and (b) a mixed state formed of a completely
entangled pure state weighted with q and a mixed state
which is weighted with 1 – q and formed of two equal-
weighted pure states represented as tensor products of
orthogonal basis states, so that the partial input and output
entropies are equal to 1 bit for all q.

2

1 q
2
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tively. The density matrix has form (13). The joint prob-
ability distribution

P(da, db) = Tr [ (da) ⊗ (db)]

is represented by the components

Here, the terms P(dα, l) and P(k, dβ) correspond to the
information exchange between discrete and continual
measured data for the first and second qubits. The
above relationships imply the following normalization
condition:

With (13) and (14), we have two parameters: the degree
of selectivity 0 � χ � 1 of a combined measurement
under consideration, the relative orientation of orthop-
rojective measurements 0 � ϑ � π/2 with value
extremes corresponding to the parallel and crossed ori-
entations of the orthogonal bases of the first and second
qubits, and the entanglement parameter 0 � q � 1 (see
Figs. 6 and 7).

The plots shown in these figures provide for the fol-
lowing results. The most unfavorable orientation ϑ  =
π/2 reduces the selected information content down to
zero at χ = 1 if the selective measurement guarantees a
nonzero contribution, i.e., if χ > 0. At χ > 0, the infor-
mation content slightly depends on entanglement
parameter q. The information maximum Is = 1 bit is
reached only for the degree of selectivity χ = 1, i.e., in
the case of a direct measurement.

Note a simple correspondence between nonselected
and extremely selected information, which immedi-
ately follows from the physical content of the corre-
sponding quantum measurement types and holds not
only for the considered 2D example but in the general
case as well. Suppose the completely selected (in our
example, χ = 1) measurement is performed at random.
This means that we have no a priori information about
the density matrix structure depending on the input and
output information encoding, i.e., on singled-out orien-
tation directions of the corresponding spins. Then, the
information thus obtained, evidently, must be averaged
over all possible orientations. The result of this averag-
ing is exactly equal to the nonselected information con-
tent, which is due to the relationship representing the

ρ̂AB ÊA ÊB

P dα dβ,( ) 1 χ–( )2 α〈 | β〈 |ρ̂AB β| 〉 α| 〉dVαdVβ,=

P k l,( ) χ2 k〈 | l〈 |ρ̂AB l| 〉 k| 〉 ,=

P dα l,( ) χ 1 χ–( )( ) α〈 | l〈 |ρ̂AB l| 〉 α| 〉dVα ,=

P k dβ,( ) χ 1 χ–( ) k〈 | β〈 |ρ̂AB β| 〉 k| 〉dVβ.=

P αd βd,( )∫∫ P αd l,( )∑∫+

+ P k βd,( )∫∑ P k l,( )∑∑+ 1.=

qualitative content of input–output joint probability
distribution (11) for the above two measuring proce-
dures.

In the case under consideration, when a completely
selective measurement is considered, variables α and β
in (11) correspond to discrete indices of basis states k
and l. With arbitrary basis wave functions |k〉  and |l〉  for
input A and output B, the corresponding POVMs are

 = (α)|k〉〈 k|UA(α) and  = (β)|l〉〈 l|UB(β),
where quantities UA, B describe the rotation from the ini-
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Fig. 6. Selected information Is in a two-qubit system vs.
degree of selectivity χ and relative orientation of selective
measurements ϑ  (a) in the absence of entanglement for
quasi-classical information communication (q = 0) and
(b) for a pure entangled state (q = 1).
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tial to measurement basis. Hence, the input–output
joint probability distribution is

(15)

where α and β are the parameters of distribution Pkl that
determine its dependence on orientations of measuring
procedures. Taking into account POVM (10) and repre-
senting the expression for a nonselective measurement
as a sum over projections with indices k and l of the

wave functions |α〉 = (α)|0〉  and |β〉 = (β)|0〉 , we

Pkl α β,( )

=  k〈 | l〈 |UA α( )UB β( )ρ̂ABUB
1– β( )UA

1– α( ) l| 〉 k| 〉 ,

UA
1– UB

1–

again obtain dependences (15) containing α and β as
information (in this case) variables. Therefore, distribu-
tion (15) over indices k and l simultaneously specifies
orientation-angle probability distribution involved in
the nonselective measurement procedure. Hence, the
integrals describing the mean selected information con-
tent exchanged via variables k and l and the integrals
describing the nonselected information exchanged via
continuous variables α and β are identical. Thus, a non-
selective measurement is equivalent to the set of com-
pletely selective measurements performed simulta-
neously for all possible orientation angles of the mea-
surement basis. The corresponding compatible
information automatically takes into account the uncer-
tainty of the basis orientation at a completely selective
measurement.

4. MEASUREMENT OF INFORMATION 
AVAILABLE IN A PHYSICAL EXPERIMENT

The above analysis based on generalized quantum
measurements stimulates further generalizations that
promise a realistic concept of information content
available with a given scheme of a physical experiment,
which can certainly be considered as one of the most
important purposes of the quantum information theory.
The main difficulty is to mathematically describe an
information model of a specific experimental scheme in
a sufficiently general form. To this end, first, it is neces-
sary to mathematically define the notions of input and
output, which is, actually, the most complicated task.
Figure 8 demonstrates a block diagram illustrating the
proposed solution.

Being affected by control interactions, the state of
an object and its noisy environment changes. These
interactions generate input quantum information asso-
ciated either with the dynamic parameters of an object
or with the set of certain quantum states that are of
interest. Output information is measured at the output
of the channel described by superoperator transforma-
tion �. Superoperator measures � and � denote trans-
formations realized by control interactions, and EB

describes the generalized quantum measurement proce-
dure in the form complying with the POVM.

This block diagram corresponds to the typical math-
ematical structure of the density matrix characterizing
a complex system involving two transformations (�
and �) which describe the control and measurement
interactions, respectively:

(16)

Here,  and  are the initial and final density
matrices of the set of degrees of freedom essential
within the framework of the mathematical model corre-
sponding to a chosen experimental scheme. Superoper-
ators �, �, and � describe physical information
extraction, transmission to the input, and measurement,

ρ̂out ���ρ̂in.=

ρ̂in ρ̂out
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Fig. 7. Selected information Is in a two-qubit system vs.
degree of selectivity χ and entanglement parameter q for the
(a) parallel (ϑ = 0) and (b) crossed (ϑ = π/2) orientations of
selective measurements.
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respectively. This Markovian structure of transforma-
tions is not the most general. For simplicity, we assume
that noisy environments corresponding to each trans-
formation are independent, so that the density matrices
can be obtained from  and taken into account in the
structure of superoperator transformations. Only due to
this simplification do we have the above combination of
three superoperators and the input density matrix and,
as a consequence, a relatively simple mathematical rep-
resentation of the information structure in terms of the
corresponding decompositions of superoperators �
and �. However, in certain cases, it may be necessary
to generalize relationship (16).

Extraction of information always involves using
physical interactions described by the corresponding
transformations, which are unitary only when they con-
tain all of the degrees of freedom employed. In addi-
tion, the interaction with the noisy environment must
also be included, which results in nonunitary transfor-
mations. Here, we discuss these transformations for
two cases of a possible choice of desired physical infor-
mation on a quantum system: (i) dynamic parameters a
and (ii) quantum states |a〉.

In the first case, physical information is extracted by
means of dynamic excitation of a system which is
mathematically described by unitary operator UA(a).
This operator may depend on control parameters c.
Probabilistic measure µ(da) properly specified must
take into account a priori information on a. Then,

superoperator � can be represented as � = 

with

(17)

where the symbol � must be replaced by the trans-
formed density matrix and broken brackets denote
averaging over the noisy environment.

In the second case, physical information can eventu-
ally be extracted in a storable form allowing for copy-
ing as a result of a certain generalized measurement
corresponding to the set of positive superoperators

(18)

In this case, the sum � =  is the superoperator of
a generalized measurement represented using the aver-

aged standard decomposition , which pre-
serves the trace of a completely positive superoperator

[48] with adequately specified operators  =  
|a〉〈 a|. Since a may also describe continuous variables,
one should use the generalized representation � =

µ(da) in the form of an integral with measure

µ(da) guaranteeing, with allowance for idempotency

ρ̂in

�aµ ad( )∫

�a UA a( ) � UA
1– a( )〈 〉 E,=

�a a| 〉 a〈 | � a| 〉 a〈 |〈 〉 E.=

�a∑
Âi � Âi

+

i∑
Âi Âi

+

�a∫

(  = ) of orthoprojectors  = |a〉〈 a|, that this
decomposition corresponds to a certain POVM:

µ(da) = .

In the most general form, the sets of superopera-
tors (17) and (18) are represented using a certain posi-
tive superoperator measure (PSM): �(da) = �aµ(da).
This measure is a decomposition of a completely posi-
tive superoperator preserving its trace. The PSM satis-
fies the complete positivity (�(da)  � 0) and normal-

ization (Tr (da)  = 1) conditions. The latter can be

represented in the equivalent form of the unit operator

(da)  =  preserved under the effect of Her-

mitean-conjugated PSM �*.

Again, it is of interest to consider the special PSM
described by expression (10) with states specified in
Hilbert spaces HA and HB which correspond to transfor-
mations � and �. This PSM associates the information
content experimentally extracted directly from quan-
tum states, which yields the most explicit description of
fundamental constraints due to the quantum nature of
information. In this situation, the output information is
represented in a stable classical form, which potentially
enables numerous users to employ it simultaneously.
This characteristic feature of classical information may
initially be involved on default in the meaning of the
term information, at least, when concerned with exper-
imental physical information unlike the physical con-
tent of coherent information discussed in Section 2.

Applying the above approach to the superoperator

of a measuring system � = (db) = ν(db),

where �b has form (18), we can represent the input and
output information as classical variables a and b
describing the desired information in both cases (i) and
(ii). The joint probability distribution corresponding to
these variables is

(19)

P̂a
2

P̂a P̂a

a| 〉 a〈 |∫ Î

ρ̂
�∫ ρ̂

�*∫ Î Î

�∫ �b∫

P da db,( ) Tr� db( )�� da( )ρ̂in.=

Environment

Object

State
control

Measurement
control

Input � Measurement Output
EB

� �

ρ̂0

ρ̂R

Fig. 8. Block diagram of an experimental setup.
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Evidently, this distribution is always positive and nor-
malized to unity. It statistically associates the desired
variables and output information that is extracted using
an experimental setup. The information efficiency of
the latter can be expressed in a quantitative form as the
Shannon classical information corresponding to the
above probability distribution. This quantity can be
used as an optimality criterion for optimizing the exper-
iment by available control parameters.

Note that, for choice (i), states |a〉  and |b〉  are not
supposed to be mutually compatible and, in the general
case, they may correspond to noncommuting variables.
In the trivial limit case, they may coincide or differ by
a unitary transformation, i.e., all quantum information
is sent with the error probability equal to zero. In this
case, the internal quantum uncertainty of this system
does not enable one to use distribution (19), which
establishes the one-to-one correspondence between a
and b. If the states belong to physically different sub-
systems, they, nevertheless, may contain quantum cor-
relations due to the corresponding superoperator trans-
formation of channel �. The simplest example is the

superoperator � = UAB � , which describes a uni-
tary transformation entangling the input and output
states.

Control parameters c may be fixed or chosen from a
certain set c ∈ C of necessary values. In the latter case,
information can be optimized according to the above
criterion. The presence of unknown a priori distribu-
tion µ(da) for dynamic parameters a in this informa-
tion structure is not caused by quantum specific fea-
tures of the problem, i.e., the problem of a priori uncer-
tainty has to be treated by the methods employed in the
classical theory of optimal statistical decisions [49]. In
the most general case, transformations �b (see (18))
of a measuring system can be described with an arbi-
trary PSM.

Consequently, PSMs �(da) and �(db) cover a very
wide range of possible types of object quantum state
control when the above quantum measurement proce-
dure is implemented in the experimental procedure
under study.

CONCLUSION

In this paper, the most general classification of
quantum information is proposed. It is based on com-
patibility/incompatibility of the input and output states
of a quantum channel. According to this classification,
all possible types of information are categorized as
classical, semiclassical, coherent, and compatible types
of information.

The physical content of coherent information is the
amount of information contained in internally incom-
patible states that is exchanged between two systems
and quantified as the entanglement preserved between
the output and the reference system. The entanglement

UAB
1–

with the latter is used to measure information at the
input and output of a quantum channel specified by a
superoperator transformation. Here, we introduce the
concept of one-time coherent information with the
information channel represented by the corresponding
joint density matrix. With this concept, two approaches
to determining quantum information are adequately
associated with each other. According to the first
approach, the channel is specified by a superoperator
transformation of the input density matrix, and accord-
ing to the second, by the joint input–output density
matrix. The coherent information exchange rate calcu-
lated for the channel between a Λ system and the field
of free photons yields the upper bound equal to 0.178γ
for a symmetric Λ system and 0.316γ in the absence of
this constraint.

The necessity of introducing compatible informa-
tion as an adequate characteristics of quantum informa-
tion exchange between two compatible systems of
quantum states is justified. Compatible information is
expressed in terms of the classical information theory
despite the presence of internal quantum incompatibil-
ity of states in contrast to coherent information, which
principally cannot be reduced to classical representa-
tions. Nevertheless, the determination of coherent
information is genetically related to compatible infor-
mation because it is based on distinguishing a pair of
compatible systems similar to the input and output sys-
tems involved in the analysis of compatible informa-
tion. One of them is the reference system, and the sec-
ond is the input or output. Thus, the presence of mutu-
ally compatible sets of quantum states is necessary for
quantifying information of each of the above types.
However, when interacting systems are considered, dif-
ferent types of information exhibit qualitatively differ-
ent types of behavior. The reason for this is that, unlike
coherent information, the presence of compatible infor-
mation may be due to both purely quantum and classi-
cal input–output correlations. Particularly, in the Dicke
problem, this circumstance results in possible existence
of compatible information (in contrast to coherent
information) after the short-lived collective Dicke state
decays.

Selection of quantum states is shown to be principal
for obtaining a useful compatible information content.
It is found that nonselected information is equivalent to
completely selected information which averaged over
all possible orientations the orthogonal bases of input
and output complete quantum measurements, realizing
complete selection of quantum states.

It is shown that mutual and internal compatibility,
i.e., the property of input and output quantum informa-
tion being classical, is a natural limitation of the physi-
cal content of the information flow in an experimental
setup. This circumstance enables one to introduce a suf-
ficiently general unified mathematical structure corre-
sponding to a chosen scheme of an actual physical
experiment and to quantify its information efficiency.
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In this situation, the information exchange between
subsystems preparing quantum information and a mea-
suring device is described by the probabilistic corre-
spondence between classical variables determining the
physical parameters of a quantum system under study
and measured output variables. Quantum information
generation and readout are represented in the general
mathematical form with two PSMs. This mathematical
representation of quantum information exchange real-
ized experimentally looks promising for applying the
quantum information theory to physical experiments.
The approaches proposed in this paper additionally jus-
tify the general statement on the physical concept of
quantum information mentioned in the main paper
heading [50].
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